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Chapter 1

General introduction

Infectious diseases, also called communicable diseases, have always
tormented humans. The bubonic plague in the fourteenth century
killed more than one third of the people of Europe and the Spanish in-
vasion in Mexico led to a decrease of the local population of 95% in 75
years, mostly due to the introduction of infectious diseases. However,
infectious diseases are certainly not something from the past alone.
Recent examples of human infectious diseases, all with different epi-
demiology, are the Acquired Immune Deficiency Syndrome (AIDS),
infection with multi-drug resistant microorganisms like Methicillin-
resistant Staphylococcus aureus (MRSA), the Severe Acute Respiratory
Syndrome (SARS) and variant Creutzfeld-Jakob disease caused by pri-
ons and linked to BSE in cows.

Although we focus on human infectious diseases in this thesis, in-
fectious diseases are not specific for humans, also animals and plants
suffer from them. Recent examples of these are the Phocine Distemper
Virus, the virus that killed a substantial part of the seal population in
north-western Europe in 1988 and 2002, foot and mouth disease, clas-
sical swine fever, bovine spongiform encephalopathy (BSE) also called
the mad cow disease, avian influenza and a fungus (Ophiostoma ulmi)
that causes the elm tree disease.

Antibiotic resistance

In this thesis we focus on colonization of humans with bacteria resis-
tant for antimicrobial agents. Colonization is defined as carriership of
the pathogen which can lead to infection, defined as an inflamating
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response to an infecting agent or its products. The large-scale introduc-
tion of penicillin during and after WWII and the development of many
new antimicrobial agents gave the impression that bacterial infections
were no longer a serious threat for humans, as these infections could
now be cured. However, ever since the application of antimicrobial
agents, bacterial strains resistant to these agents are seen with increas-
ing frequency and treatment of bacterial infections with antimicrobial
agents has no longer a guaranteed success.

The bacteria perspective

For most types of resistance, bacteria have to carry additional genes
that encode for the mechanisms that lead to resistance [Andersson
and Levin, 1999]. These additional genetic elements have to be du-
plicated upon cell division and therefore cell division of resistant bac-
teria should be slower and requires more resources compared with
cell division of non-resistant bacteria of the same strain. This means
that, in the absence of the antimicrobial agent, non-resistant bacterial
strains should have a selective advantage compared to the resistant
strains. However, this so called cost of resistance may be overcome
by compensating mutations [Andersson and Levin, 1999]. Moreover,
plasmids and transposons (small mobile genetics elements that can be
transferred between bacteria (even of different strains)) which carry
resistance genes may be an evolutionary cheap way for bacteria to
eliminate the cost of resistance [Bergstrom et al., 2000]. When a patient
carries other types of bacteria, for instance non-pathogenic commen-
sal strains, and these commensal strains have mobile genetic elements
like plasmids and transposons with resistance genes against the given
antimicrobial agents, there is a serious risk that the pathogenic strain
acquires the resistance genes from the harmless bacteria. Therefore, in
the human perspective, resistance in non-pathogenic bacteria is also a
serious problem.

The human perspective: how to reduce it?

The most obvious way to reduce the frequency of carriage of resistant
bacteria is a prudent use of antimicrobial agents [Stewart et al., 1998],
[Austin et al., 1999a]. This will reduce the selective advantage of resis-
tant strains and may hence lead to a lower frequency of resistant strains
compared to the frequency of susceptible strains. However, also other



strategies may lead to a lower level of resistance. For instance, multi-
drug therapy might be more effective in preventing resistance than sin-
gle drug therapy despite the fact that the total amount of antimicrobial
agents prescribed per patient is higher. The idea behind this mecha-
nism is that in case bacteria suffer from one type of antimicrobial agent,
acquiring a genetic element that leads to resistance of the bacteria to
that antimicrobial agent is sufficient to survive. (The acquisition may
take place by mutations or by acquisition of genetic elements via trans-
posons or plasmids from other strains.) When bacteria are exposed
to more antimicrobial agents, a single acquisition is not sufficient for
survival and when the probability for bacteria of acquiring resistance
against all used antimicrobial agents is extremely small, this will pre-
vent the development of resistance strains.

Another strategy to prevent resistance in hospitals is the so-called
cycling of antimicrobial agents, the sequential use of different antibi-
otics in a hospital. Cycling is based on the idea that once the frequency
of resistance for an antimicrobial agent rises above a certain level, the
hospital switches to another antimicrobial agent for which no resistance
is present and which has a similar spectrum, i.e., it is active against
the same type of bacteria. When resistance against this agent has in-
creased, the frequency of bacteria resistant for the original antimicrobial
agent should have decreased (for instance because patients who carried
these resistant bacteria are discharged) and re-introduction of the orig-
inal agent should be successful. However, the effect of this measure is
controversial [Bergstrom et al., 2004; Bonhoeffer et al., 1997].

Another approach to prevent infections in immunocompromised
patients is selective digestive decontamination (SDD) [Jonge et al.,
2003]. Immunocompromised patients receive antimicrobial agents that
eradicate potentially pathogenic gram-negative bacteria in the gut but
leave the anaerobic flora intact, thereby preventing bacteria from col-
onizing the gut (this concept is called colonization resistance [Vol-
laard, 1991]). With a high level of hygiene in the (intensive care) unit
and, ideally, no potentially pathogenic bacteria in the gut, there are no
pathogenic bacteria left to cause infections. However, when resistance
against the antimicrobial agent is already present, as might be the case
in hospitals, these resistant strains will have a selective advantage and
SDD may lead to an increase in the number of infections with resistant
bacteria.
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The available data and how to extract useful information from it?

To study the effect of interventions, like SDD or cycling, is not easy.
There are many different antimicrobial mechanisms and many dif-
ferent types of bacteria that all interact differently. But even if we
focus on one specific type of bacteria there are many problems. One
of the problems in the epidemiology of resistant bacteria is that there
is not just a single clone of each bacterium but they exist in all kind
of varieties. Not only are there differences in antimicrobial resistance,
e.g., vancomycin-resistant Enterococcus faecium (VRE) [Hayden, 2000]
[Austin et al., 1999b] vs. vancomycin-susceptible Enterococcus faecium
(VSE) and Methicillin-resistant Staphylococcus aureus (MRSA) [Austin
and Anderson, 1999] vs Methicillin-susceptible Staphylococcus aureus
(MSSA), but strains can differ in many other characteristics, e.g., in
adherence factors, either or not toxin-producing, virulence factors
[Willems et al., 2001], the level of resistance against an antimicrobial
agent and so on. Large databases with information on different clonal
groups of these bacteria are available and genotyping is required to
analyze the epidemiology of these different clonal groups as standard
culturing on plates (with antibiotics to test the susceptibility) is not suf-
ficient to determine whether strains collected from different patients
are identical. However, genotyping is an expensive method and other
methods may be useful as a complementary tool (see Section 5). An-
other basic problem in epidemiology, but also for clinicians, is that a
negative microbiological culture does not necessarily mean that the
microorganisms of interest are not present because a culture may also
be false negative [D’Agata et al., 2002a] either because the microorgan-
ism of interest was not present at the body-site at which the swap was
performed, but was present at other sites, or because the test itself is
imperfect. Moreover, a positive culture does also not imply that the
patient is persistently colonized with the bacteria, as colonization can
be transient.

The possible role of mathematical models

What has mathematics to do with the previous discussion? At first
sight maybe not much, but if one faces an outbreak or epidemic with an
infectious disease, one would like to know the answer to questions like:
“"What will be the final size of the epidemic?” or “What will be the ef-
fect of intervention measures?” One can think of intervention measures



like the removal of all elm trees in a specific area to stop the spread of
the elm tree disease, the preventive removal of cattle in case of foot and
mouth disease, to quarantine infectious individuals in case of SARS
[Wallinga and Teunis, 2004] or the screening on admission of patients
with a higher risk of colonization with MRSA [Verhoef et al., 1999]. To
answer these questions, mathematical models of the spread of infec-
tious diseases can be useful and these models can also contribute to
answering questions whether the interventions are cost-effective.

Before starting to model an infectious disease, one has to have a
question in mind to which an answer is sought. However, even if the
question is well-defined, there are many aspects involved. One has to
have a basic understanding of the disease, but also the question how
detailed the model should be is important. A very detailed description
that stays close to reality often has the disadvantage that the model
has many parameters. If the value of many of these parameters is not
known very well, the predictions of the model may be inaccurate if one
of the estimates of the parameters is way off. Yet, such a complicated
model may serve as a tool to determine which parameters play an im-
portant role and should be determined more accurately. Often a very
simplistic model is chosen which is a caricature of reality, but which,
hopefully, gives the correct relation between the parameters of inter-
est. In modeling, the interaction between models and experiments is
crucial. Ideally, a model is a tool for constructing a hypothesis which
can be tested experimentally. The experiments may lead to the observa-
tion that the model is not completely satisfactory and the revised model
may, again, lead to a new hypothesis which can be tested.

If one has a basic idea which elements are important and should be
incorporated in the model, there is still an important decision to make.
What is the influence of chance in the process , i.e., should we use de-
terministic models or stochastic models?

With the word deterministic we mean that when we know the initial
situation, we can predict, with certainty, subsequent behaviour. In real-
ity this is not the case and probability is important, e.g., an individual
has a certain probability to acquire the influenza virus during an epi-
demic but whether or not this individual acquires the virus cannot be
predicted beforehand with certainty. To acquire influenza one has to be
in the vicinity of someone who has influenza. Apart from heterogene-
ity between individuals (some have many contacts with people, some
only a few, some are (partly) immune for influenza, others not), chance
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processes play a role, e.g., whether or not there was an infectious indi-
vidual in the bus you took? When there are many infectious individuals
and many susceptibles, you still are not able to predict with certainty
whether or not a given individual will acquire influenza. However,
if you are interested in the total number of infectious individuals at a
given time, the individual chances to acquire influenza will average out
and it is possible to predict relatively accurately how many individuals
are infectious at a certain time. (Compare this with throwing a coin. If
you throw a fair coin 10000 times, you can be quite sure that the number
of heads that will appear will be close to 5000.) When either the number
of susceptibles or the number of infectious individuals is small, chance
will become important. (If one throws a fair coin 2 times, it is not un-
likely that you will only see heads.) In general, any model for infectious
diseases is stochastic in nature at the individual level. However, if the
numbers of individuals in each of the categories is large, stochastic fluc-
tuations will be small and a deterministic model is likely to give good
results.

For small hospital units (intensive care units), a deterministic model
is unlikely to be satisfactory. Suppose one knows that on average 3.2 of
the 8 patients are colonized. Such a number does not mean much with-
out knowledge about the statistical fluctuations. For instance, are there
often zero colonized patients in the unit while all patients are colonized
at other days, or is the number of colonized patients fairly constant.
This is crucial information for designing intervention policies. What
does it mean that many patients in a unit are colonized? Is it just a nor-
mal’ statistical fluctuation or is it an extreme value and is it likely that
something is wrong with the hygiene in the unit? There is in fact a gen-
eral problem with intervention studies: If one notices a high prevalence
of a certain pathogen, intervention measures are taken. But what can be
concluded from a decrease in the prevalence? Is the decrease the result
of the intervention measure, or was there, by chance, a high prevalence
and was it likely that the prevalence would have decreased also in the
absence of the intervention measures? Therefore an epidemiological
study without knowledge of the typical fluctuations, i.e., without data
from a baseline period, can be useless.



Examples of the kind of conclusions one can deduce from mathemat-
ical models

We will now discuss two well-known mathematical models as they
both play a role in this thesis.

The first model is the simple case of the Kermack-McKendrick
model [Kermack and McKendrick, 1927] which is a reasonable model
for an epidemic that lasts for a short period of time, i.e., birth and
death of individuals is of minor importance during the course of the
epidemic. An example to which the Kermack-McKendrick model can
be applied is measles. A typical measles infection of a child has the
following pattern. After contact with the saliva of a person who has
measles, the measles virus can enter the body via the respiratory sys-
tem. After infection, the virus multiplies inside the body. After 8 till
14 days the person becomes ill and, more importantly for the spread of
the disease, the person becomes infectious. After about two weeks the
immune system beats the virus and the individual becomes resistant
against the measles virus. To model the spread of the disease, we look
at a population of N individuals. In the Kermack-McKendrick model,
the population is divided into three categories. Individuals who have
never been in contact with the virus (labeled with an ‘S’ of suscep-
tibles), individuals who are infectious (labeled with an ‘I’) and the
group of individuals who have had the disease but are not infectious
anymore, either because they have become resistant or because they
died. This group is labeled with an ‘R’ for ‘/Removed’. Because of the
names of the groups, the simple version of the Kermack-McKendrick
model is also called the SIR-model. (A more realistic model for the
spread of measles should incorporate the latent period (the time from
infection to when the individual is infectious to others). This requires
the introduction of an extra category of individuals and leads to the
so-called SEIR-models where the ‘E’ stands for exposed. However,
within a closed population the final size is not influenced by a latent
period.)

The SIR-model assumes that the number of contacts per unit of time
between susceptibles and infectives is proportional to the number of in-
fectives and the number of susceptibles in the population. The constant
of proportionality contains information about how many contacts indi-
viduals have per day and which fraction of the contacts actually leads
to infection. This constant is denoted with the symbol /N where di-
vision by IV ensures that the number of contacts per unit of time of an
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individual does not depend on N. Another parameter in the model
determines how long individuals remain infectious. The probability
for an infectious individual to lose the contagiousness is denoted by
a. Note that this debatable assumption implies that the infectious pe-
riod is exponentially distributed; in fact the parameter « is chosen as
(average period of infectiousness) 1. We ignore birth and death in the
population, which is a reasonable assumption because the duration of
a measles-epidemic is short (a few months). Therefore the number of
newborns and the number of deaths during the epidemic is small com-
pared to the size of the population. With these assumptions, we can
write down a system of three differential equations that governs, for
large N, the dynamics of the disease when we know the size of each of
the three categories at a given time.

s _ _pls
dt _ p1s™
i

Although the derivation of this model is not complicated, the system of
differential equations is already too complicated to solve analytically.
However, a numerical solution can be determined without any prob-
lem. For o = 1 and 3 = 2 we obtain as solution

fraction

1

05 SR

time

0 5 10 15

where we assumed that initially almost all individuals are susceptible.

Although an explicit solution for the SIR-model is not available,
other characteristics of the epidemic can be calculated exactly. For in-
stance, one can determine whether or not the pathogen is ‘contagious’
enough to start an epidemic. To answer this question, we introduce
the basic reproduction number Ry [Diekmann et al., 1990]. Suppose
a population has never been in contact with the pathogen of interest



and an infectious individual enters the population. Ry is then defined
as the expected number of individuals that are infected by the index
case. If we ignore the depletion of susceptibles in the population, each
of the infected individuals will infect on average again R, suscepti-
bles. Therefore, the disease will spread in the population when Ry > 1
while the pathogen becomes extinct if Ry < 1. For the SIR-model, the
calculation of Ry is straightforward. Each infectious individual has a
probability « per day to lose the infectiousness. Therefore, given that
an individual becomes infectious, the expected length of the infectious
period is 1. Per day, an infectious individual infects 3S/N individuals,
but the fraction of susceptibles in the population is 1 directly after the
introduction of the pathogen. Therefore an infectious individual infects
on average Ry = ;. susceptibles. When we know R, we can determine
which fraction of the population is still susceptible after an epidemic.
Instead of looking at absolute numbers of individuals, we look at frac-
tions and we denote with s, i and r the fraction of the individuals that
belong to the respective categories. One can verify that at the following
quantity does not change over time, it is conserved:

%lns—s—i (1.2)

Before the epidemic (denote this time with —oo) the fraction of sus-
ceptibles equals 1 and there are no infectious individuals. Similarly,
when the epidemic is over (denote this time with +00), there are no
infectious individuals. The equation §In s(—o00) — s(—00) — i(—00) =
3 In s(o0) — 5(00) — i(c0) reduces to:

In s(co) = Ry (s(o0) — 1) (1.3)

With this equation, we can determine the fraction of the population that
is still susceptible after the epidemic. In the figure below we plotted
the left hand side of equation (1.3) as a function of s and we plotted the
right hand side for Ry = 0.5,1 and 2.
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From this graph we note that there are two distinct situations, i.e.,
Ry < 1land Ry > 1. If Ryp < 1 we see that the only solution is s = 1.
This means that everybody in the population is still susceptible. This
is logical as the pathogen was not contagious enough to start an epi-
demic. If Ry > 1 equation (1.3) has two solutions. One solutionis s = 1
when there has been no epidemic, for instance because no infectious
individual has entered the population. The other solution shows that
even when an epidemic has occurred, a fraction of the population has
escaped infection. These individuals are still susceptible after the epi-
demic. However, the larger the Ry-value in this model, the smaller the
fraction of susceptibles after the epidemic.

Although this model is relatively simplistic (the article of Kermack-
McKendrick also deals with far more general models), this model
sketches how an infectious disease can spread in the population.

This model, though, is not suitable for all questions about infectious-
disease-dynamics one would like to study. The duration of an epidemic
like HIV is so long that the population dynamics (natural birth and
death) cannot be ignored. Other diseases have a long latency period
in which the patient is not at all or hardly infectious, e.g., tuberculosis
for which the latency period can be lifelong. Such a latency period can
have important consequences for the spread of a disease. Moreover, in
case of a latency period, the latency period need not be exponentially
distributed. On the contrary, it has often a more or less fixed duration.
This questions the validity of the standard type of differential equations
which implicitly assume exponential distributions for the infectious pe-
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riod and for the latency period. Often the general conclusions which
can be drawn from these simplistic models are quite robust, though
quantitative answers based on these models are not very accurate.
Another problem is that patients do not become completely immune
but only to a specific strain (influenza). Other infections, like Herpes
simplex, are recurrent. After recovery, the virus hides inside the body
and may cause symptoms again when the immune system is weak-
ened. Other diseases are caused by pathogens that have a lifecycle in
different hosts, e.g., for malaria. Both humans and mosquitos can carry
the malaria parasite. There is no direct transmission of the parasite
between humans or between mosquitos, but a parasite free mosquito
can acquire infection on biting a human who carries the parasite in the
blood and uncolonized humans can acquire infection when they are
bitten by an infected mosquito. The Ross-Macdonald model, see e.g.,
Chapter 14 of [Anderson and May, 1991], takes this into account.

Recently [Austin et al., 1999b] the Ross-Macdonald model was ap-
plied for the spread of vancomycin-resistant enterococci in an intensive
care unit. In this application the health care workers (HCW) serve as
vectors (like the mosquitos) who can transfer the pathogen from one
patient to another. In a similar way as for the Kermack-McKendrick-
model, we can construct a system of differential equations for the ap-
plication of the Ross-Macdonald model to an intensive care unit. This
system describes the simplest variant of the model in which re-infection
is not important.

a5y _ _ g I

o = bigiegS tal

dI I

G = bt S1 — ol )
dSs _ I (1.4
o = —Perge S+ aels

dly

_ I _
gt = Pegie 52 — aely

(Note that this deterministic model for HCW and patients relies on the
assumption that both the number of HCW and the number of patients
are fairly large.) If we assume that the number of patients is constant
(N1) and the number of HCW is constant (/V2), the system reduces to a
system of 2 differential equation because S1+1; = Ny and Sy +1z = No.

L= B (N — L)+ —aaly

% = [2(Ny — 12)]1\—711 — ol

When there is good hand hygiene, HCW’s will carry the bacterium for
a short period of time (till the next disinfection procedure) while the pa-

(1.5)
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tients are colonized for a much longer period (typically during the rest
of their stay). This scale difference allows us to use a so-called quasi-
steady state approximation. Id est, in the differential equation for the
colonized health care workers, one can assume that the number of col-
onized patients is constant and that the number of colonized HCW will
have its equilibrium value. The equilibrium value for the number of
colonized HCW, given the number of colonized patients, can be calcu-
lated:

S8 62N2II
A e S 1.6
2 ao Ny + Bo1y (16)

If we use this approximation in the differential equation for the number
of colonized patients we obtain:

dI, B162No
— = (N7 - 1) — af 1.7
dt 042N1+5211( 1-h)h-ah (1.7)

If % is not fluctuating much, e.g., if as > (2N;, we have

a model in which the health care workers are not explicitly taken into
account anymore, in the sense that the dynamics of the model would
be the same if patients would transfer the bacterium directly to each
other instead of via HCW’s. Based on longitudinal data of patient col-
onization it is impossible to determine whether HCW were involved
in bacterial transmission. This observation is used in Chapter 5 where
we only try to distinguish between infection routes for which the corre-
sponding acquisition rates have fundamentally different mathematical
expressions.

For small units, the deterministic approach is no longer correct and
a Markov chain approach can solve the problem of a finite number of
patients. However, a direct translation of the differential equation (1.7)
into a Markov model approach is not appropriate. Due to stochastic
fluctuation, at some moment no colonized patients will be left in the
unit and according to (1.7) all patients will remain uncolonized from
that moment on. Therefore, we incorporate that a fraction of the ad-
mitted patients is colonized. Let p;(¢) be the probability of having i
colonized patients in the unit at time ¢. The parameter a denotes the
rate at which an uncolonized patient is discharged and replaced by a
patient who is colonized on admission. The parameter ¢ denotes the
rate at which a colonized patient loses colonization or is replaced by an
uncolonized patient see [Pelupessy et al., 2002]. The parameter (3 is the
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transmission parameter. The master equation will be:

Epo(t) = —aNpo(t) + cpi(t)
o) = (aN =i+ D)+ F - DV —i+1)) pia(t
- (a(N — i)+ Zi(N — i)+ cz’) pi(t) + c(i + 1)piy1(t)
don(t) = (a(N=1)+ FOV=1)) py-a(t) = eNpn (D).
(1.8)
This thesis

In Part I we discuss models for the spread of nosocomial antibiotic-
resistant bacteria with admission of colonized individuals from the
extramural population. In Chapter 2 we will discuss an analytical
model and in Chapter 3 we will focus on colonization with Methicillin-
resistant Staphylococcus aureus (MRSA). We use both an analytical and
a simulation model. Both models suggest that isolation of identified
carriers of MRSA in hospitals combined with either screening on ad-
mission of high-risk patient or the screening of contact patients in case
of the identification of an unexpected MRSA carrier in the hospital,
may be sufficient to prevent high levels of MRSA in the hospitals.
However, the so-called Dutch search and destroy policy in which both
interventions are applied ensures that the current low prevalence level
of MRSA in the Netherlands is far less sensitive to changes in the pa-
rameter values.

In Part II we use real hospital data to draw conclusions for spe-
cific pathogens/diseases. In Chapter 4 we use a simple observation to
disentangle the phenomena that patients who acquire an infection are
likely to stay longer in a unit and that patients who stay longer in a
unit are more likely to acquire an infection. In Chapter 5 we use like-
lihood methods in a Markov chain approach to distinguish between
different infection routes on the basis of the fluctuations in the preva-
lence. This method is applied to data for colonization with two differ-
ent pathogens. This method is also used to determine optimal culture
frequencies.

Open problems, future work, outlook

There are still many questions to be answered. What is the typical site
of colonization or is it important to take colonization at different sites
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into account? This requires within-host dynamics, as some compart-
ment of the body can acquire colonization from another compartment.
This is important when bacteria are harmless in their normal compart-
ment (e.g., in the gut) but can cause infections when other compart-
ments are reached (e.g., in case of ventilator-associated pneumonia, the
lungs). Also for the modeling of SDD the compartmental structure may
be essential. Another point requiring more attention is the influence of
the quantity of potentially pathogenic bacteria on the infectivity of a
patient. A related question is how the initial dose of the pathogen in-
fluences the likelihood of acquiring colonization or infection.

Another important point is the length of the infectious period. Do
colonized patients become infectious directly after acquisition of colo-
nization, or does a latency period exists? Is colonization persistent till
discharge or can colonization be transient and how is the infectious pe-
riod influenced by the use of antimicrobial agents in case of infection?
Does it eradicate colonization or can colonization persist, although at a
lower level than before treatment?

Another point is a more detailed distinction between infection
routes. Is contamination of the environment relevant? What is the
role of visitors? Can the pathogen persist in the air for a long period of
time or is airborn transmission not important at all? Although math-
ematics alone is certainly not able to answer these questions, it may
help to better understand the dynamics of these acquisition routes and
collaboration between physicians, epidemiologists, statisticians and
mathematicians can be fruitful.
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Modeling






Chapter 2

Hospitals as the driving
force for antibiotic
resistance

2.1 Introduction

Antibiotic resistance has emerged as an important health care problem
in the last decades. Difficulties in patient treatment are becoming more
and more apparent, both for infections within hospital settings as in
the community at large. In several studies the dynamics of antibiotic-
resistant microorganisms were analyzed theoretically. Some studies
specifically addressed the effects of antibiotic consumption [Bonhoef-
fer et al., 1997; Austin et al., 1997; Austin et al., 1999a], whereas other
analyses were restricted to dynamics within hospital settings [Lipsitch
et al., 2000; Austin et al., 1999b]. Only recently has a start been made
with the theoretical investigation of the interaction between within-
hospital dynamics and community dynamics [Cooper et al., 2004]. In
the rest of this article we focus on species for which the spontaneous
development of resistance is insignificant as compared to transmission.
For vancomycin-resistant Enterococcus faecium (VRE) or Methicillin-
resistant Staphyloccus aureus (MRSA) this assumption holds, but for
many other antibiotic-resistant microorganisms, e.g., for Mycobacterium
tuberculosis, spontaneous development of resistance, due to patients
who do not complete their medication regime, cannot be neglected.

The characteristics of the hospital setting and the community set-



18 Hospitals as the driving force for antibiotic resistance

ting differ markedly. The hospital setting only covers a small propor-
tion of the total population, with rapid turnover of patients, that are
exposed to high levels of antibiotics and multiple potential sources of
resistant bacteria. As hospitalized patients are usually ill, they have a
higher risk to develop infections with antibiotic-resistant bacteria. In
contrast, within the community, antibiotic use per individual is much
lower and for many microorganisms individual-to-individual trans-
mission will hardly ever occur, e.g, for MRSA. Nevertheless, individ-
uals carrying antibiotic-resistant bacteria will be discharged from the
hospital and some will, at some later time, be re-admitted to a hospital,
potentially re-introducing antibiotic-resistant microorganisms.

Infection control measures, such as identification of carriers of
antibiotic-resistant bacteria and preventing spread of these microorgan-
isms to other patients, are used to limit the rise of antibiotic-resistance.
Although an infection with an antibiotic-resistant microorganism is
the most relevant entity, the epidemiological dynamics of antibiotic-
resistant microorganisms are primarily determined by colonized pa-
tients. The adjective ‘colonized” indicates that an individual is a carrier
of the microorganism, without necessarily suffering from infection.
Infections only represent the tip of the iceberg, as only a fraction of col-
onized patients will develop an apparent infection. Moreover, among
colonized patients one can distinguish between those who can spread
the microorganism to their surroundings (most importantly to other
patients), and those who cannot and so are not infectious. Progression
from the just colonized state to the spreader state can be facilitated
by antibiotic use, creating a strong selection for the resistant microor-
ganisms, leading to overgrowth and potential for transmission. Un-
fortunately, there are no diagnostic tools to distinguish between the
colonized and the spreader status, and, therefore, the distinction is
mainly theoretical.

The aim of the present study is to evaluate how the community
reservoir and the hospital reservoir of antibiotic-resistant microorgan-
isms influence each other, and what can be expected from different
infection prevention strategies. Specific questions that have been ad-
dressed are: What fraction of the population will eventually carry
antibiotic-resistant microorganisms? How long will it take to reach a
stable situation? What are the consequences of prevalence of antibiotic-
resistant microorganisms in the community for the endemic prevalence
of antibiotic-resistant microorganisms in the hospital? For this purpose
we have used a deterministic model in which we compartmentalize
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the population into six subpopulations and distinguish individuals on
the basis of their colonization status. We also introduce some hetero-
geneity of the population and analyze the effects of spatial structure of
hospitals and their associated communities.

The present paper is a prelude to data analysis, see chapter 3. It
tries to develop tools for risk assessment, or, more precisely, for the
assessment of the efficacy of various potential control measures to pre-
vent the spread of antibiotic resistant pathogens at long time scales and
large spatial scales. Admittedly this is a hesitant start, not a final result.
We hope it stimulates others to improve the situation. We face a com-
plex problem with far reaching implications of major importance and
frightening prospects, so we think that a modest attempt at improving
our arsenal of tools is worth the effort.

2.2 Basic Model

To investigate how an antibiotic resistant microorganism can spread in
the population we consider the following model (see Table 2.6 for a list
of symbols). We subdivide the population into six groups. First we
make a distinction between individuals who are hospitalized, we label
them with a T for (treated), and individuals in the community (non-
hospitalized), labeled with an U (for untreated). We also distinguish in-
dividuals on the basis of their colonization status. We restrict ourselves
to three classes. Different names are used for these categories in medi-
cal and mathematical literature. In this paper we will adopt the medical
names and below we will mention the mathematical names between
square brackets. Uncolonized individuals [susceptibles] (labeled with
the subscript 0), people who are colonized [infected] with the microor-
ganism of interest, but who are not able to spread the microorganism,
not even when they are in the hospital (labeled with the subscript 3)
and people who harbour the microorganism in great quantities and so
are spreaders [infectious] (labeled with the subscript 1) provided they
are in hospital. Slightly abusing notation, we shall use the symbol T%
both to denote a colonized individual in the hospital and, in differential
equations to be formulated below, to denote the number of such indi-
viduals. Mutatis mutandis the same applies to similar symbols. We
make the following assumptions (also see Figure 2.1):

e After introduction of the resistant strain into the population,
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spontaneous development of resistance is insignificant compared
to transmission.

e Newborn individuals do not carry the strain and enter the popu-
lation in the community at rate .

e Individuals can only acquire colonization when they are a patient
in the hospital, see e.g., [Salgado et al., 2003], by contacts, direct or
indirect, with a contagious patient (71), leading to transition from
Ty to T% . The probability per unit of time to acquire colonization
is proportional to the number of 7} individuals, with as constant
of proportionality the transmission rate parameter (3.

e Only hospitalized colonized individuals can become spreaders.
We denote the rate of this transition by . (The idea is that this
transition is caused by antibiotic treatment, which improves the
competitive success of the resistant strain by (partially) eliminat-
ing sensitive strains.)

e Transition from the state with great quantities of antibiotic re-
sistant microorganisms to the colonized state and from the col-
onized state to the uncolonized state only occurs in the commu-
nity (for instance due to a cost of resistance for antibiotic resistant
microorganisms such that they are outcompeted by non-resistant
microorganisms). We denote the rate at which the high-load is
lost by x (whose value will be high) and the rate of getting com-
pletely rid of the strain by w. (We assume that type 1 individu-
als cannot turn into type 0 without first becoming type 1/2.) We
neglect decolonization in the hospital settings as resistant strains
often have a selective advantage in hospitals but also because in-
dividuals stay in the hospital only a short period. If the decolo-
nization rate is not extremely large, decolonization is most likely
to occur in the community.

e Individuals are discharged from hospital at rate o and are hospi-
talized at rate v.

e The death rate, 1, is independent of the state of the individuals.

When the population is large, so that a deterministic model applies,
these assumptions lead to the following system of differential equa-
tions:
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Figure 2.1: Basic model

A= (p+v)Up+wUi +0Tp
2
— ,u—i—w—i-z/)Ul +xUi +o0T:
2

p+x+v) U1+UT1

(

~ 1)
— (o +p) To + vUy — BI0Ty '
—(

—(

J—I—,u—l—a)Tl —|—1/U1 + BToTy
O‘—I—,LL)Tl—I-VUl—i-Ole

According to these equations, the total population size (V) stabilizes at
%. The total number of individuals in the community U (= Up+U1 +U))
2

and the total number of patients in the hospital 7" (= Ty +71 +17) satisfy:
2

d

dt
d

dt

from which we derive the equilibrium:

—U = A= (u+v)U+oT (2.2)

—T = vU—(o+w)T (2.3)

gt 0t A (2.4)
ct+utvu

L (2.5)
o+ ptvu

We shall henceforth assume that N, U and T have their equilibrium
values from the beginning.

Instead of working with the size of the subpopulations in terms of
absolute numbers, we now rescale them to fractions of the population
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in and outside the hospital, i.e. U; = Z and T; = L withi € {0, 1 5,1},
For convenience we also rescale the t1me such that patlents stay on av-
erage one unit of time in the hospital, i.e. 7 = ot. We obtain:

Uy = U, + X

drr _

e et m o o a6
4T = "“‘T + "WU + aTl

2.2.1 Determination of R,

Ry is defined as the expected number of individuals who acquire colo-
nization from a spreader introduced in a ‘virgin” hospital (and with the
rest of the world being ‘virgin” as well), and become spreaders them-
selves. To calculate Ry, we do the following: Suppose a spreader enters
the hospital, while all other individuals are uncolonized. R is defined
as the expected number of colonized patients due to contact with this
spreader. P is defined as the probability that a hospitalized colonized
patient will ever become a spreader. A hospitalized spreader remains
hospitalized for an average period of 1/(;x + ). On average, such a
patient spreads the antibiotic resistant microorganism to 57p patients
per unit of time. Therefore, per admission a spreader will spread the
antibiotic resistant microorganism to 7y/(u + o) patients. With prob-
ability -2, the spreader will not die during hospitalization. When this
is the case, there are two ways in which this individual can become
a spreader again (see Figure 2.1). It may return to the hospital with-
out losing its high-load status, i.e. label 1, this occurs with probability
m +; —,» Or it may first turn into a low-load individual (label 5) (proba-
bility —— “Tx1,), return to the hospital (probability To7y) and regain the
spreader status (label 1) due to antibiotic treatment (probability P).

Mathematically this is expressed by the formula:
T
_ BTo L vR n X v rrl =
put+o o+pulpt+tx+v pu+xt+trvptwtv

_ Bly(p+x+v)(pt+w+v)
C(pHo)(prx+v)(ptwtv) —ov(ptwtv) —ovxP

P can be determined from the observation that a hospitalized colonized
patient can become a spreader during its current hospitalization (prob-
ability ﬁ) or the patient can be discharged without acquiring the
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spreader status (probability ;+7-—) but acquire the spreader status dur-

ing a subsequent hospitalization. This results in the following equation
for the probability P:

P = P=

(0% + ag |14
atput+o atp+o ptw+v
p_ a(ptwtv)
~ (afpto)(ptwtv)—ov

By definition of R and P we have that Ry = RP. In a colonization free
population we have that Ty = 7. Therefore:

Ry = aBAv(wtv+p) (ptx+v) (2.7)
0= wlotpr){[latpto)(wtvtm)—ov][(uto) (utx+v)—ov]—ovxa} ’

If Ry > 1 an epidemic will occur with certainty because the model is
deterministic, while if Ry < 1 no large outbreak will occur. For later
convenience we define

Ry= lim Ry(w,x) (2.8)

W, X0

as the basic reproduction ratio in the ‘decoupled” situation that there
are no carriers outside the hospital and accordingly no colonized pa-
tients are admitted to the hospital. This is the reproduction ratio per
admission to the hospital.

2.2.2 Determination of the steady state

To determine the behaviour of the solutions of the system of differential
equations (2.6), we first would like to know the steady states of (2.6). If
we put all right hand sides of (2.6) equal to 0, we find two solutions:

e the trivial solution in which the infective agent is absent:

To=1 Tpy=1 U, =T1=U;=0 (2.9)

[
N

e the non-trivial steady state:

T, = 4 ofvbptv)wtpty)

1 Bu((atpto)(ptv+x)—vo)

—(otpt0) (ptv+0) (1) (ux+v) —vo) (wpdv)+vo (utv+o) (ax—votv(o-+u) (x+1u+v))
Bl (ot ko) (ptvx)—va)

7 (o) (ptrix)-—vo g

j:;l o a(ptr+x) T

Ui = G 1t

7, = volax—vot(otm(utvx) T
3 a(pto)(ptv+w)(ptrv+x)

(2.10)
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fraction carriers

Figure 2.2: The equilibrium fraction of carriers in the populations function of

w for x — 00, & = 26,v = =, = &, 0 = 26 and five different values of 3

such that, up from below, R4 = 0.5,0.8,1,2,5.If R4 > 1, endemicity exists for
all values of the decolonization rate w. For R4 < 1, re-admission of carriers is
essential for the pathogen to persist and the decolonization rate should not be
too high for endemicity.

which is only relevant when the size of all subgroups is non-negative.
This is the case if and only if Ry > 1. Using Routh-Hurwitz criteria,
we find that for Ry < 1 the only equilibrium, the trivial one, is stable,
while for Ry > 1 the trivial equilibrium is unstable but the non-trivial
equilibrium is stable!. See Figure 2.2 for a graphical and quantitative
illustration of (2.10)

2.2.3 Time scales

It is not possible to solve the differential equations (2.6) analytically.
Therefore we try to approximate the solution by exploiting differences
in the typical time scale of the various processes. Due to the rescal-
ing of the time in deriving (2.6), the time scale for the length of stay in
the hospital (and therefore also for the length of the infectious period),
is O(1). As individuals generally spend only a short period of their

! A Mathematica notebook with the proof is available from the authors
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life in a hospital, we assume that the time scale for the life time and
the periods between hospitalizations are of order O(1) with € a small
parameter As a consequence, the fraction of the individuals in the hos-
pital T*+U* = O(e). As Ry ~ OT* = B(U* + T*)U*JFT* we have to
assume that 3(U* + T*) = O(2). (Otherwise Ry would be O(e) <
which would mean that the antibiotic resistant microorganism cannot
persist. See section 2.3.3 for a more complicated situation in which this
is not valid.) We also assume that the typical duration of colonization
outside the hospital is long compared with the duration of a stay in a
hospital. These assumptions can also be written as:

W=€w p=¢fl V=c¢D ﬂzé (2.11)
where symbols with a hat all have the same order of magnitude.
This leads to the following system of differential equations:

%ff% = %[71 +e (—Wﬁ% + gf%) + O(€?)
d%f% = —%TV%HEJF@Q —T] — 1T
e (gﬁ% — LTy — B(o+ M)(l—:@—ﬁ)ﬁ) +O(?)
%(71 = —%(71 +e <—?U + ng) + O(€?)
AT — T4+ 0y + 2T, - c (4 - 601
2.12)

We now calculate the zero order approximation of the equilibrium, i.e.,
we look for the solution of:

X =0
"*O‘T1 + U1 + ﬂ”(1 - T1 )T, =0 (2.13)
—T1+U1—|—O‘T1 =0
which is given by:
U =0
Ty =T

(2.14)
T1 o | 4+ — + <_L2 4 7)2 + 402 (7-1
2 2 afp O‘JFU afv a+o (Oé-‘rO’)BI}Oé 2

In the zero order approximation, U 1 = 0 and we can conclude that both
Ui and U; change slowly. Up to first order in e we have that
2

U, = eiﬁ +0O(&2) (2.15)
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Now substitute the equilibrium (2.14), a function of U 1 and (2.15) into
the differential equation for U 1. We obtain:

a?(a+o)

= —(u+w+u)ﬁ%— 50~ T 5
2 ~
_’_\/(g o 0'25(;—/18-0')) + UQ(i—EU)VU%

We have that %ﬁ% > 0 as long as 0 < [7% < Uf';;l , with ﬁevq the non-
trivial equilibrium of (2.16). Therefore, after the introduction of the mi-
croorganism into the population, the number of colonized individuals
in the population will steadily increase towards its limiting value.

.
wV1

(2.16)

If ﬁ; is small, for instance shortly after the introduction of the mi-
2

croorganism, we can make a Taylor-approximation of equation (2.16).
This results in:

~ o?(a+ o) ~ o?(a+ o)
U, =-— - S NNV
dtU% <M+w+y aﬁy—a(a—l—a))U;—i—y (2.17)
The solution of a differential equation of this form (% f=—-af+
c2, f(0) = 0) is:
Ui(t) = 2 (1—e ). (2.18)

2 C1

It follows that the time scale of the initial rise of the prevalence in the

extramural population is %, with

o?(a+ o)
afy —o(a+ o)

aa=pt+w+tv-— (2.19)

2.2.4 Some numerical results

To compare the approximations with the exact solution we plot in Fig-
ure 2.3, for one choice of parameters and initial conditions, the numer-
ical solution of (2.1), the numerical solution of the quasi-steady-state
approximation and the Taylor approximation of the quasi-steady-state
approximation. (The parameters choices were chosen for realism.) The
Taylor approximation of the quasi steady state solution is very good if
U 1 is not very large. The quasi steady state solution is almost identical

to the exact solution, except for a shift in time, due to the longer period
it takes before the equilibrium in the hospital is reached when we do
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Figure 2.3: Uy (t). For p = 75,0 = 26,v = 15,0 = 26,w = 1, Ry = 1.8 the
exact numerical solution, the numerical solution after the quasi steady state
approximation and the solution of the equation based on the Taylor expansion
of the quasi steady state are plotted (the last two almost overlap)

not make the quasi-steady-state approximation. The effects of different
values of # and w on the numerical solution of (2.1) are depicted in Fig-
ures 2.4 and 2.5 respectively for the level of colonized individuals in the
hospital and in the community. If 3 is large, a high endemic equilibrium
in the hospital is reached rather fast, while the presence of the strain in
the community can slowly rise for a very long time, depending on w. In
contrast, when Ry is only slightly larger than 1, admission of colonized
patients becomes important. The shape of the curves is sigmoidal. In
our model, all parameters are held constant which reflects constant an-
tibiotic consumption in the sense that every individual has a constant
probability per unit of time of receiving drugs (which stimulates the
transition from T% to 11).

2.2.5 Discussion and conclusions

It is very difficult to distinguish patients between being a spreader
(U1) or just a carrier U 1. Sometimes newly hospitalized patients are
screened for the presence of the colonization [D’Agata et al., 2002a], but
the distinction between patients being colonized or being a spreader



28 Hospitals as the driving force for antibiotic resistance

(7 % +Ux f% + Tl
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(a) U% + Us as functions of the (b) f% + Ty as functions of the
time in years since introduction time in years since introduction
of the pathogen for different R4 of the pathogen for different R4

Figure 2.4: For large R 4, a high endemic level is reached within hospitals in a
short period of time. For values of R 4 only slighter bigger than 1, readmission
of carriers becomes important and within-hospital endemic levels are increas-
ing over a longer period of time. y — 00, 0 = 26,11 = =,V = &, a = 26,w =

1,R4=1,11,1.5,2,5 (up from below)

U 1 + U 1 T% + fl
2
4
1
2
0 4 8 years 0 4 8 years
(a) U% + U; as functions of the (b) T% + T as functions of the
time in years since introduction time in years since introduction
of the pathogen for different de- of the pathogen for different de-
colonization rates colonization rates

Figure 2.5: For a R, significantly larger than 1, endemic levels within hospi-
tals are not much influenced by the value of the decolonization rate. For the
prevalence level in the community, the decolonization rate is very important.
X — 00,0 =26, = 55,V = 1=,a = 26,w = 0,0.1,0.5,1,5 (from above),
Ry = 2.
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cannot be made. Furthermore we expect that people, who are dis-
charged from the hospital, are rather healthy. Therefore it seems rea-
sonable to assume that individuals are no longer spreaders when they
leave the hospital. This holds true for enteral microorganisms (our as-
sumption that transmission only takes place in the hospital is based
on this). This also makes the category U; redundant. However, indi-
viduals may remain colonized after hospital discharge for prolonged
periods of time [Byers et al., 2002].

If Ry > 1 the fraction of infected individuals in the hospital will rise
fast in the beginning, irrespective of the value of the decolonization rate
(Figure 2.5) Also the final level of colonized patients in the hospital is
not very sensitive to the value of the decolonization rate. Only if Ry ~ 1
the precise value of the decolonization rate does influence the dynamics
in the hospital substantially. For a relatively large decolonization rate,
the fraction of carriers in the population is proportional to the level of
infected patients in the hospital and inversely proportional to the decol-
onization rate. For small decolonization rates, the fraction of carriers in
the population is mainly determined by the value of the decolonization
rate provided Ry > 1.

2.3 A Core Group

2.3.1 Basic assumptions and main conclusions

The model of the previous section describes the spread of a nosocomial
microorganism in the population, but it ignores some factors that might
have substantial impact. In this section we will investigate the influence
of heterogeneity in the population (a core group) and in Section 2.5 we
will investigate how the presence of more than one hospital can alter
the results.

So far we assumed that the only relevant characteristics of individ-
uals are their state with respect to colonization and infectiousness and
whether they are in the hospital or not. However, some individuals will
have a chronic disease and will visit the hospital more frequently. We
will not concentrate on the dynamics within a designated unit [D’Agata
et al., 2002b], but will look at the consequences for the dynamics in the
population at large. Therefore, we use the extension of the basic model
presented schematically in Figure 2.6 and represented mathematically
by the differential equations (2.20). We now have two distinct groups
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Figure 2.6: The full model with a core group

of individuals, members of a core group (C) that typically represent the
chronically ill and frail segment of the population and ‘normal” indi-
viduals (IV). We assume that the fraction of core group patients in the
population remains constant and that a core group patient remains in
the core group the rest of his life, while a ‘normal’ individual will never
belong to the core group. This last assumption is not very realistic, but
it will hardly affect the results. Both groups obey the same dynamics,
only with different values for the parameters. Specifically the parame-
ter n is larger than v, which corresponds to a more frequent admission
to the hospital. Again we assume that transmission only takes place
within the hospital. As patients in the core group may share medical
equipment and may be cared for by a specialized group of health care
workers, we assume that transmission of the microorganism happens
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more likely between core group patients than from non-core group pa-
tients to other patients or vice versa. With the same kind of definitions
and notation as before, (for instance the constant number of hospital-

% ~ C
ized core group patients is T7¢" = T§ + T¢ + T and TF = %), the
2
analogue of (2.6) now becomes:

iUl = L+ 20
45 _ U+u+a u+o 8
d’r% - T + U + o cr+u+uT0T1 +5 o s+m+nT0T1
4, = u+x
dr - J_i_u
ir = 0+“T1 + aTl + “*"U
-
400 = —mpe s a T4l
T 2 4 Us+m =
2
dmrc s+m+a C m+s rrC b CHC | Y C
dr T% - T + U + o n+m+sT T + o V+/L+O'T Tl
drrC  _ m+:1:+n n_gC
@ qlc _ CU1 ch+mT 270
a _ s+m a m+s
1T = Ty UTE + U
(2.20)

We find that when (3 is large and the number of patients in T is large,
the influence of a core group will be small. The infection pressure
within the hospital is already high and will only become slightly higher
due to the core group. However, if Ry < 1 for the basic model, the core
group becomes important. They are a permanent source of resistant
microorganisms and can maintain resistant microorganisms within the
hospital setting that would disappear otherwise. When colonized pa-
tients remain colonized for a long period of time, the fraction of col-
onized patients in the population will increase, despite an Ry smaller
than 1 for the normal population when it would have been strictly sep-
arated from the core group population.

2.3.2 Computation of R,

Suppose the microorganism is introduced in a virgin population. This
can happen in two ways. Either a core group patient or a ‘normal’ pa-
tient can become a spreader. In both cases we can look at the expected
number of individuals in both categories which become spreader due
to the first spreader. By Ry(N,C) we denote the expected number of
core group patients who will become a spreader and who were infected
by the initial ‘normal” spreader and mutatis mutandis we define the
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other three numbers. We obtain:

_ afAv(wtv+p) (ptx+v)
Ro(N,N) = Ao TP v £ oG oY -av—ovxa)
R (C C) _ abln(z+m+n)(m+z+n)
0\~ m(s+m+n){[(a+m+s)(z+m+n)—sn][(m+s)(m+z+n)—sn]—snazx}
Ro(N.C) = (ayin{m =t m)(u-t ot v){(e bt o) (n+ ot 2) o0

(m(m+n+s)(a+m+s)im+z+n)—sn])/
{llat+pto)(utwtv)—ov][(u+o)(p+x+v)—ov(utw+v)]
—ovxa(p+w+v)}
(achv(p+w+v)(m—+z+n)[(a+m+s)(m+z+n)—sn]) /
(i + v +0)(a+ o+ 0) (p+w+v) — ov]) /
{[(a+m+s)(m+z+n)—sn][(m+s)(m+z+n)

—sn(m+ z +n)] — snza(m+ z+n)}

Ry(C,N)

(2.21)
When all these reproduction rates between groups are strictly positive,

the matrix
( Ro(N,N) Ro(C,N) )
Ry(N,C) Ry(C,C)

is primitive and the largest eigenvalue is strictly dominant (see e.g.,
page 77 of [Diekmann and Heesterbeek, 2000]). The largest eigenvalue,
which we call Ry, is given by:

Ro = %(RO(N, N) + Ro(C, C)
+1/(Ro(N, N) = Ro(C, 0))? + 4Ro(C, N)Ro(N, C))

(2.22)

2.3.3 Dynamics of the system

Two possible steady states of (2.20) exist, the trivial one (in which the re-
sistant microorganism is not present and the non-trivial one (for which
an awkward expression can be derived). To determine a quasi steady
state approximation, we first exploit that members of the core group
visit the hospital often, i.e. n > v or v = e0. We also assume that
the decolonization rate w satisfies w = ew, which means that carriers
in the community remain colonized for a substantial time. Finally we
assume that the death rate is small and that transmission from 73 to TOC
is infrequent, i.e., m = em, u = efi and ¢ = ec.

There are two different cases. In the first one, we assume that 8 = %,
i.e., transmission is important in the normal population. In this case,
up to zero order, the core group population and the normal popula-
tion decouple and we re-obtain the results from Section 2.2. Intuitively,
this means that there are already many spreaders in the hospital for
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the normal population and the presence of some spreading core group
members is of minor importance.

In the second case, we assume that transmission in the normal pop-
ulation is less important, i.e., 3 = 8. Up to zero order, we obtain for the
equilibrium for T:

~c a(x+n) z(s+a)(s—o)(n+s)

= 2.2
V' o talz+n) * bn(sz + a(z + n) 223

which reduces to Tvlc = #@?n) if the discharge rate for core group
and the non-core group is the same.
For the non-core group population, we then obtain the following

system of differential equations (with slightly different coordinates)

% <(7% + [71) = —EM%;J“D ([7% + [71) + 6% <T% +T1> + 6%[71
%(71 = —%[71 —6%[71 +€§T1+O(62)
L(T+Th) = —(Ty+0)+(0, + ) - (Tu + T
2 2 2 2

—i-e% <(7; + (71) + 6%f1 (1 — <f1 +f1>
2 2
e T (1 — (T% n T1>>
%Tl = —%Tl + % (T% +T1) - E%Tl

(2.24)
These differential equations cannot be solved exactly. However, a
lower-bound for the fraction of carriers can be obtained by putting
B =0, i.e,, there is no transmission within the non-core group popula-
tion. In this way, the differential equations become linear and can be
solved exactly (but the expression is awkward).

If w is large, the fraction of colonized patients in the population will
be small. However, when w is small, of the order of v, the fraction of
colonized patients can become high even if there is not enough trans-
mission within the normal population to maintain the antibiotic resis-
tant microorganism, see Figure 2.7.

2.4 Infection prevention strategies

We now return to the model without a core group. We want to investi-
gate the influence of infection prevention measures of hospitals on the
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20 40 years 0 20 40 years
(a) U% + U (b) T% + T

Figure 2.7: The numerical solution of (a) U 1+ U, and (b) T% + T4 as function
of the time in years for several values of the decolonization rate z = w. We
rescaled such that all values are fractions of the specific population (i.e. in or
outside the hospital and member of the core group or not). For these graphs
we used the following parameters: R4(N,N) = 0.5, Rs(F,F) = 1, while
transmission is 50 times less likely to occur from a core group patient to a
normal patient than between normal patients if the prevalence in both groups
would be the same. We assume there is no transmission from the non-core
group to the core group. 0 = s = 26,0 =a =52, p =m = #4,v = £ n =
5 x =z =26and z = w = 1,0.2,0.1, 0, where the lower the value of z and w,
the higher the prevalence in the hospital and the community.

dynamics of colonization. For simplicity we assume that within a hos-
pital, patients are either non-colonized or spreaders, while in the com-
munity, individuals are either non-colonized or colonized, but never
infectious. For notational reasons, we write U for the fraction of colo-
nized individuals in the population and we write T for the fraction of
infectious individuals in the hospital. In that case, we obtain the fol-
lowing two differential equations:

Ay — — U+v-—2T
al=—rwtUtvegd - (2.25)
%T:*(U+/L)T+(U+M)U+O__,’_M_,’_V(l*T)T.

However, we now assume that every now and then, at rate ¢, all col-
onization is eradicated from the hospital by a short but effective cam-
paign, after which the prevalence will be rebuilding up slowly. The
deterministic prediction of U and T is then impossible, so we switch to
a stochastic description. We introduce the density function f = f(U,T)
such that the probability to find (U, T) to belong to a set w is the integral
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of f over w.
We obtain the following partial differential equation for f(U,T)

a function of time ¢:
of 9 (dU o (dT .\ _
o a0 (dtf> ToT ( f) = (2.26)

with boundary condition:

T - SO
CHU0FO.0 = [ (0. DT .27)
The equilibrium distribution should satisfy:
o (dUu o (dT

As before, we assume a quasi-steady state approximation applies, i.e

we assume that U is a constant. Hence we have that

8+ 2 (Ef)=—ef (2.29)
This equation can be rewritten as:
0 dT dT 0
—— f:———{ (2.30)
oT dt dt oT
Hence we obtain by separation of variables,
8 dT ~
af _ oF dt. te ar € .~
dt dt
We rewr1te I as:
& =+ T+ (o+wU+ ;5550 -T)T 2.32)
= —aT?+bT 4 c = (aT +n)(-T + )

b= a'—i—ﬁ,ul,/—‘rl/ —o—p,c= (o4 p)U and -1= 7_”2;;4“%

with a = +/H_y,

and £ = 7”’22‘;“% the roots of d:tr = 0.
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We now write:

_€_ d — — af+n a§+n dT —
f f aT+77)( T+§ faT+ * *T‘i’f (233)

T+
pr log (aT + n) aty log ( T+ f) oty log <if+2)

Now equation (2.31) can be written as:

log f(T) = —log ((aT +m)(~T +€)) - a§6+ - log (iTT:Z +C
(2.34)

and we obtain:
~ ~ —— - —1——c_
F(T) =0 (_T + 5) & (aT n n) i (2.35)

with € a constant which we now determine from the condition that f
is a density, i.e.

j =
/f dT_1;»Q_e<z>”“ (2.36)
0

Thus we deduce as formula for the density:

FT) = e (2’)“ (—T+§)ﬁ_l (af+n)_1_ﬁ. (2.37)

Note that f (f) has a singularity at T = ¢, i.e., at the steady state in
the hospital. Typically, the density will look like the function in Figure
2.8, with almost all the mass of the density function being concentrated
around T = 0 and T’ = . (This coincides with the results of Section 2,
where there is a rapid transition from low prevalence within the hospi-
tal to a high level prevalence.)

In a similar way, we can construct the density function f (T) if the
probability that a hospital takes infection prevention measures, such
that the hospital becomes colonization free, depends on T.Ife=e(T) =
kf, we have that:

F(T) (af n 77) ik (—T n ,5) ks (2.38)
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Figure 2.8: Typical example of the density f(T)

If ¢ = ¢(T) = IT?, we have that:

2

af—n 1 £

F(T) x e (oT + n)_1+l T (T y g>_1+l“§" L (2:39)

The constant of proportionality is such that fo£ F(T)dT = 1. To compare
the different functions for ¢(T'), we choose ¢, k and I such that the to-
tal number of eradication episodes of hospitals is identical in the three
situations, i.e. fof F(T)e(T)dT is the same for the three situations. As
expected, if the total number of clearances remains constant, while rel-
atively more clearances happen in hospitals with a high prevalence, as
is the case when ¢(T) = IT?, hospitals are less likely to have a high
prevalence (see Figure (2.9)). However, the general picture, that the
prevalence in a hospital is either low or high, does not change. We will
use this observation in the next section.

2.5 Multi-center setting

In this section we will investigate the dynamics of colonization in a
setting with many (smaller) instead of one (big) hospital. We restrict
ourselves to the situation without direct contact between hospitals (i.e.,
we ignore transfer of a patient from one hospital to another).

2.5.1 Markov process

We will start this section with a description of a Markov process. On
the basis of the previous section, it seems reasonable to assume that a
hospital is either infected or infection-free. Therefore we assume the
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density function distribution function

0.1 0.2 0.37 0.1 0.2 0.37

01 02 03 04 T 01 02 03 04 T

0.3 0.4 T
YRa=1.5

Figure 2.9: Density function and distribution function for: € = 1, ¢ = kT, and

€ = IT?. k and [ are chosen such that the expected number of eradication per

yearis 1. y = 1/70, v = 1—15, o = 26, U = 0.001. The distribution function is
. T

defined by: F(T) = [ f(t)dt.

(=)
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g0 g1 o o IM—1
/\‘ / /\\ - . /\
0 1 2 AN M—1 M
\// \\/ " \/
1 T2 h ™M

Figure 2.10: A Markov process

following: Let M denote the number of hospitals and p; the probability
that ¢ hospitals are infected with the microorganism of interest.

We assume that the growth rate g;, the rate at which the transition
from i colonized to 7 + 1 colonized hospitals occurs, is proportional to
the number of colonization free hospitals and that the reduction rate r;
is proportional to the number of colonized hospitals (see Figure 2.10).
In that case we obtain (with € and § constants (not related to the previ-
ous €)):

T, = 01
gi = €(M —1)
%Pi = Tip1Pit1 + gi-1Pi—1 — (i + gi)pi

sz'zl
K3

The steady state solution of these equations is given by the following
binomial distribution [Kampen, 1981]: (with = = £)

7 M—i
pf:(?)(lim) <1—|1—l‘> (2.41)

The expectation and variance of this distribution are given by: (see also
Figure 2.11)

(2.40)

_ x __Mx
E = M+ Var = EESE: (2.42)

2.5.2 Dynamics outside the hospital

We now combine the model we described in Section 2.2 with the ap-
proach of the previous section. Therefore, we assume that the e of Sec-
tion 2.5.1 depends on the community reservoir of the microorganism.
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fraction of hospitals infected

1 E
0.5
Var
0 4 8 “"

Figure 2.11: mean and variance of the binomial distribution as a function of

= £
13—6.

We would like to use the stationary distribution (2.41). The eigenvalues
A0, A1, ..., Ay of system (2.40) are 0, — (0 +€), —2(d +¢€), ..., —M(d +¢).
Therefore, the process will converge to the steady state solution (2.41).
The typical time scale for this process is given by — /\% = 5%5' When hos-
pitals are actively eradicating the microorganism, § will be large and,
therefore, we can use the stationary distribution.

First, we will investigate the situation when patient admission is
not linked to any specific hospital and distribution over the hospitals
occurs randomly.

In the Markov process model, € is the rate at which a coloniza-
tion free hospital becomes colonized. Therefore, € is proportional to
the number of admissions to the hospital, the probability that a newly
hospitalized patient is colonized and the probability that a colonized
patient initializes an outbreak in the hospital. We assume that € = U 1.
The rate ¢, at which a hospital eradicates colonization, is hard to deter-
mine. It depends on the efficacy of infection control measures, but also
on the fraction of hospitalized patients which are colonized. For sim-
plicity we assume that only the control mechanisms matter, i.e. § does
not depend on U 1. We have that § = 5(7% with s a constant.

To construct a simultaneous model for hospital and community, we
assume that in the colonized hospitals we can use the quasi steady state
approximation (see (2.14)). This gives:

0= (0 (1) 1 (0) 5 es

with m the number of infected hospitals. The only difference with the
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model with only one hospital, is the factor 7; in the differential equa-
tion. If m is large, the results of both models will be similar. How-
ever, if m gets smaller, colonization of both patients and hospitals will
slow down considerably (and the pathogen may even go extinct due to
stochastic fluctuations).
For simplicity we next remove the stochastic influence, and we take
sU
for m the expected number of infected hospitals. m = 1+S% M, see
1
2
equation (2.42). If we simplify the model even further by assuming
that U is small, we can make a Taylor approximation of 7 +7} around
2 2

U, = 0. Then we get as differential equation up to second order in U :
2

NI

477 _ (_ptvtw _ (ato)o?s vs ) 7
dTU% - ( o afB(o+p) + o+p U% (2.44)
+ ((04-1—0)0252  ws2 vo?(a+o)s > ﬁg :
oot o+n ~ ormapr—ataron ) Ul

The solution of a differential equation of the form % f =cif +caf?
is: f(t) = A’ with A a constant. When c1 > 0and ¢, < 0 (0

T 1-2 At
large enough), this solution will behave similar to the function given in
(2.18).

2.5.3 Spatial structure

In real life, people are usually admitted in a hospital in their own area.
To investigate the influence of this phenomenon, we make the follow-
ing assumptions:

e the community is divided in M sub-communities

e each sub-community has a hospital

e with probability ¢ an individual is admitted, when the need
arises, in its ‘own” hospital.

e hospitalized patients that come from another community re-
ceive special care (for instance they are put into quarantine).
Therefore, the probability that a colonized patient from an-
other sub-community initializes an outbreak in hospital ¢ is ;
(0 <& < 1Vi) times the probability that a colonized patient from
sub-community ¢ initializes an outbreak in hospital i. Due to
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the special care, patients may also be less likely to acquire colo-
nization.) This is taken into account by introducing the factor ;.
The probability for a patient from a sub-community j # 7 to ac-
quire colonization during hospitalization in hospital ¢ is 7; times
the probability to acquire colonization for a patient from a sub-
community i. Note that {; and 7; only depend on the hospital that
takes the intervention measures and not on the sub-community a
non-local patient comes from.

e For simplicity we postulate that the probability that a hospital-
ized patient not receiving special care acquires colonization dur-
ing the stay in a colonized hospital is y;. We can justify this ap-
proximation by looking at the basic model in which the steady
state in the hospital is not so strongly influenced by the fraction
of colonized individuals in the community.

e We ignore that a hospital stay has a certain duration.

For the moment we assume that a hospitalized patient who does not
go to the hospital in his own area, goes to some randomly chosen other
hospital. With these assumptions we obtain the following equations:

ZUL = —wUl vy | ap'+ 57— Zmp’ (1—U%) (245)
J#

Ly = e | +6~—LSFH | (1-p)  @46)

dt ’ 2 ‘M — oy 3

A disadvantage of this model is that people who have been in another
hospital before, but are now in their own hospital, receive the same
care as people who have only been in their own hospital. Therefore,
this special care has only a limited effect.

The fact that there is no mortality in the model can be corrected by
increasing the value of w with ;1. We choose the following parameter
values: v = %,y =0.6,w = 0.2,¢9; = 10Vi,5 = 1. We now solved the
equations numerically for several combinations of the other parameters

in the case of three regions, see Figures 2.12 and 2.13.

A hospital that implements special care to reduce nosocomial trans-
mission, is able to keep the fraction of carriers in its extramural popula-
tion at a lower level for some time, despite the higher prevalence rates
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Ui (1) p'(t)
1.0
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t t

(a) No quarantine measures, no spatial structure: {; = 1,17; = 1,q = %

Ui (1) p'(t)
1.0
0.08
0.5
0.04
0 30 60 0 30 60
t t

(b) No quarantine measures, 90% of the patients go to their own hospital. &;

1,7=1,¢=0.9

Figure 2.12: Changes over time in the fraction of carriers in sub-communities
(left pane) and in the probability of a hospital to be infected (right pane). The
population consist of three sub-communities with in each sub-community a
hospital. v =1/15,y = 0.6, w = 0.2, g = 10,6 = 1, p1(0) = 1, p2(0) = p3(0) =

0,Ui(0)=0
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Ui (1) p'(t)
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0.04
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(a) One hospital takes quarantine measures. §&1 = &2 = 1,83 =0.01, m1 =2 =
1,m3 =0.01,¢ = 0.9.

Ui (1) p'(t)
1.0
0.08
0.5
0.04 k/g/
0 30 60 90 t 0 30 60 90 t

(b) All hospitals have quarantine measures, & = 0.01, 7; = 0.01, ¢ = 0.9.

Ui (1) p'(t)
1.0
0.08
0.5
0.04
0 30 60 90 t 0 30 60 90 t

(c) One hospital takes quarantine measures. £&1 = & = 1,83 =0.01, )1 =n2 =
1,73 = 0.01, ¢ = 0.9, but the hospital with quarantine measures also has w = 1
as a consequence of a search and destroy policy.

Figure 2.13: Changes over time in the fraction of carriers in sub-communities
(left pane) and in the probability of a hospital to be infected (right pane). The
population consist of three sub-communities with in each sub-community a
hospital. v =1/15,y = 0.6,w = 0.2, g = 10,6 = 1, p1(0) = 1, p2(0) = p3(0) =

0, Ui (0) = 0.
2
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in the other sub-communities. However, in the long run, when a sub-
stantial fraction of the own community consists of carriers, the special
care measures lose their effectiveness. The same applies for cohort-
ing of patients to a hospital as captured by the parameter ¢g. Although
this will delay the spread of resistance to other communities substan-
tially, in the long run, when a substantial fraction of the own commu-
nity consists of carriers, cohorting is not effective anymore. Only mea-
sures such that Ry becomes smaller than 1, i.e., an active search-and-
destroy-policy, in the sense that colonization within known carriers is
eradicated, or a reduction in the probability that the hospital will be in-
fected when a colonized patient is admitted, can be effective in the long
run.

So far we assumed that a ‘foreign” hospital was chosen at random.
This does not seem to reflect reality. We expect that in such a case a
patient will go to a neighbouring hospital. For instance, define the fol-
lowing 1-dimensional model in which on each position corresponding
to an integer number there is a hospital and there is a uniform distri-
bution on the real axis of individuals. U represents the fraction of in-
dividuals who carry the microorganism,2U0 is the fraction that doesn’t
carry the microorganism. S is the probability that a hospital is free of
colonization, and P is the probability that colonization is endemic in
the hospital. (We assume that there is no intermediate state.) Further-
more let f(x — k) be the probability that when an individual at position
x gets hospitalized, it is in the hospital at £ and let (z) and £(z) be
the continuous analagon of 7; and ¢;, i.e., when n(0) = £(0) = 1 the
reduction in infectivity and susceptibility respectively when a patient
is hospitalized in a hospital at distance x. Furthermore we assume that
the likelihood of admission to a certain hospital only depends on the
distance to that hospital, i.e., f(a) = f(—a)Va € R. In that case we
obtain:

500, 0) = = plo(, )+ (. ) —vyUi(a,1) 3 P11 fe—Dnfar—1)

E€Z
%Ué (x,t) = —(w+ ,u)U% (x,t) + vyUp(z,t) IGZZ PlLt)f(x —Dn(z —1)

45(k,t) = 5P(k.t) — gS(k, 1) _T U (k — 5,0) F()€(s)ds

4Pk, t) = —6P(k,t) + gS(k,t)jo Us (k — s,)f(s)(s)ds

1
2

(2.47)
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When we linearize around U 1 (z,t) = 0and P(z,t) = 0. We obtain:

%Ué(l’,t) (w+u)U1 (x,t) —i—l/y%:ZP(l ) fle—Dn(x —1)

. (2.48)
4 p(k,t) = —5P(k,t) + g f Us (k = 5,6)()&(s)ds

Integrating of these equations yields:

Ui ( t) = U1 (x,0)e” (‘”“)t—i-l/nyPl s)fz—1)n(z—1)e (s
0 leZ

P(k,t) = P(k,0) _&—I—gft T) Ur(z,t —7)f(x — k)é(x — k)e O drdx
0 —co 2

(2.49)
We now substitute the equation for U 1 into the equation for P. This

yields:
t 00
P(k,t)=P(k, O)e“”—{—gfdre“”" f da:f(k:—:v)&(k:—x)U; (z,0)e~(wtm(t=7)

—i—guyzdre‘s’"}odxf(k—x) (k—x fdse wh) (st S~ P(1 ) f(z—1)n(z—1)

leZ
(2.50)
This can be written as:

P(k,t) = Py(k,t) + gvy / dsY P(l,s)n(k—Dylt—s)  (251)
0

leZ
where
t o0
Py(k,t) = P(k,0)e™% + / dreo" / dzf(k — z)U(z,0)e” @)
0 —o0
(2.52)
depends only on the initial conditions and
n(k) = [ def(z+k)E(k+ ) f(x)n(z)
P (2.53)

t
Yo(t) = [ dre~(@Hmre=olt=r) = w

To describe the evolution of the system from the beginning of time
instead from ¢t = 0, one has to solve the following differential equa-
tion: (see also [Diekmann, 1978], [Diekmann, 1979], [Rass and Radcliffe,
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2003])
t

Pl ) = [ ds S P sy~ Dl - 5) (254
e lEL

If we look for a traveling wave solution P(k,t) = w(k+ct), the solution

w has to satisfy:

o0

w) = 3 [drutm-em@y-mn@) @5
meZ+y 0

An exponential solution w(y) = e*¥ should satisfy

1=)" / Yo (7)eMN Ty (D dr (2.56)

leZ

By using the definition of y,(t) (2.53), this equation simplifies to:

B+ w+p+Are) =D eMy(l) (2.57)
leZ

The minimal value of ¢ for which there is a solution is the wave speed.

We can also make a diffusion approximation of the system 2.47,
where we assume that the fraction 1 — ¢ of the patients that it is not
hospitalized in its own hospital go the next-neighbouring hospital. In
one spatial dimension we obtain (with £ now a continuous variable):

aatU( ) = —wU(z,t)+

vy (ap(e,t)+n(2)(1-q) [pl@,t)+ 5 (e, 0)] ) (1-U(w,1))
Zp(e.t) = —op(x, 1)+

g (aU(2,0)+€@)(1-q) |U(a,0)+ 52U (,0)] ) (1-p(a, 1))

(2.58)
This type of non-linear partial differential equation is difficult to han-
dle, but again is possible to determine the propagation velocity of the
colonizing microorganism. In an area where the microorganism ap-
pears for the first time, U and p are small, and, therefore, we can lin-
earize the equations. If we assume that the speed of a traveling wave is
found by looking for a travelling wave solution of the linearized equa-
tions we can find the minimal velocity of the wave. The linearized
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equations (around U 1=p= 0) are:

2U(r,t)=—wU (r,t)+vp (ap(r, ) +n() (1 = ) [p(r, )+ 5 Zp(r,)])
2p(r,t)==0p(r.)+g (aU (. ) +&(r) (1 = 0) [U(r, )+ 3 2 U (1, )]
(2.59)

If we now use the Ansatz of a traveling wave solution, ( g ) =

eMz=et) ( Yo ) we obtain the following formula for the velocity ¢:

P
c=utd
5/ @=0)* +4vyg {gtn(L—)+ In(L X2} {g+€(1—q)+3E(1-)A2)

(2.60)

As this formula is invariant under interchanging 1 and £, we conclude

that they are equally important in reducing the spread between hospi-
tals.

If ¢ > 0, we need that A < 0 to consider a wave traveling to the

right, so we look at the minimal ¢(\) for which a solution with A < 0
exists. In order to let ¢ be positive we need that:

wH+6—(w—02+4vyg{g+n(l—q)} {g+&(1-q)} <0 (261

This follows from the following analysis. Write

=2 et ran (2.62)

AA

in which all parameters are positive (except ). Taking the derivative
with respect to A\, we find:

dc o 1 b+ 2d)\?
— = bAZ + d\* — 2.63
P TR Ch G /ey s vy U (269)
Substitute A> = ;. Because we are only interested in negative ), this
substitution is one to one. If we put = 0, we obtain the equation:
d? 2ad 2
it = (a2 ) -+ S —a=0 (2.64)
«@ «

Condition (2.61) coincides with Z—z — a < 0. Therefore equation (2.64) is
a polynomial of order > 2, with a positive highest order coefficient and
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for which all other coefficients are negative. Therefore there is a unique
root of (2.64) with © > 0 which implies a unique minimal velocity of
the wave. Equation (2.61) can be seen as a test whether the microorgan-
ism is able to spread to other hospitals. This becomes evident, when
one realizes the following: When a colonized individual enters a fully
susceptible population, colonization will remain for an average period
of 1. This individual visits a hospital on average £ times during this
period. The probability that the hospital will become colonized during
such a visit is given by g for the own hospital and g for a neighbouring
hospital. If a hospital is colonized, it remains so for an average period
of 3. During this period, y(q + (1 — ¢)n) new individuals become colo-
nized. Therefore Ry is given by:

Ry = %g{q +&(1—q)tylga +n(1 —q)} (2.65)

and inequality (2.61) is identical to the condition Ry > 1. When each
patient goes to its own hospital, ¢ = 1, the infection cannot spread
between hospitals. The speed of the traveling wave for other values of
q is shown in Figure 2.14. The speed of the traveling wave as a function
of the decolonization rate is shown in Figure 2.15. [t]

Another possible extension is the situation that when an individual
visits its own hospital, (s)he gets the question whether (s)he has been
in another hospital recently. In that case we have to introduce a group
which answers “yes” to this question. (We denote this group with an
asterix.) People leave this group at rate ¢. We then get the following
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(a) basic model with w = 0, 0.2, 0.39
and 0.399and { =n =1
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(b) basic model withw = 0.2and £ =
n=20.01,0.1,0.5,0.8 and 1
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(d) extended model with n = & =
0.01,w = 0.2and ¢ = 0.1, 0.2, 0.5, 1
and 2

Figure 2.14: Speed of the traveling wave as function of g, the fraction of hospi-
talized patients that go to their own hospital. » = 1/15, g = 10,6 = L,y = 0.6.

(As to be expected, the curves are ordered according to the value of w; a simi-
lar ordering occurs in the other pictures and in Figure 2.15).

Although the speed is plotted Vg € [0, 1], we are mainly interested in large q.
For small g only a minority of the hospital admissions will occur in the own
hospital, which does not reflect reality. Moreover, as patients not admitted in
the own hospital receive special treatment, a small ¢ can prevent spread of the

pathogen.
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Figure 2.15: Wave velocity for the basic model as function of the decoloniza-
tion rate w. v = 1/15,¢g = 20,6 = 0.5,y = 0.6,¢ = 0.95and £ = n = 1,0.5,0.1
and 0.01.
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If we again replace the sum over all other hospitals by a sum over
neighbouring hospitals, we can make a continuum approximation. Us-
ing a traveling wave-ansatz, we can determine the minimal speed nu-
merically for this extended model, see Figure 2.14. Of course we are
primarily interested in the region where g is close to one, because that
is the case in reality.
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2.5.4 Conclusions

We are interested in determining which precautions reduce the asymp-
totic velocity. As follows from Figure 2.14, cohorting (increasing ¢), can
reduce the velocity substantially, but only if ¢ is already quite high. If
special care (quarantine) is effective, ¢ < 1, cohorting becomes even
more attractive. In that case, isolating people who have recently been
in another hospital, decreases the velocity even more, but reaching sub-
stantial effect will be difficult (Figure 2.14).

Let us now focus on the influence of  and &. Decreasing 1 dimin-
ishes the probability that an individual acquires colonization when ad-
mitted in another colonized hospital. Decreasing & reduces the prob-
ability that a hospital acquires colonization when an individual from
a neighbouring district is admitted. Both mechanisms will slow down
the propagation speed and, as follows from equation (2.60), both inter-
vention strategies are equally effective. Assuming & = 1 we can obtain
the influence of infection prevention measures as function of w. From
Figure 2.15, we can conclude that infection prevention measures can
be a powerful tool in preventing the spread of a resistant pathogen. It
can substantially reduce the spreading velocity, and can even prevent
the spread if sufficiently effective. However, we have to stress that this
method only gives a lower bound for the spreading velocity, because
transfer of patients from one hospital to another is neglected.

2.6 Discussion

Interactions between levels of colonization within hospitals and within
the community were analyzed. The main features of these analyses are
(1) that the rate at which colonization is lost after hospital discharge is
the major determinant for the ultimate level of colonization in the com-
munity, (2) that a small population of individuals characterized by fre-
quent hospital admissions and high risk for colonization can maintain
hospital endemicity, and thus create in the long run substantial com-
munity levels, even when the pathogen would disappear otherwise,
and (3) that individual settings (e.g., hospitals or countries) can protect
themselves against resistant pathogens by infection control measures,
but that these are doomed to fail in the long term when resistance in
the population builds up.

Modeling infectious diseases relies on making assumptions which



2.6 Discussion 53

are open for discussion. First, we assumed that patients can only be-
come colonized by cross-transmission within hospital settings. This
holds true for many nosocomial pathogens, especially resistant forms
of microorganisms that belong to the commensal flora of the intestinal
tract. Examples of such pathogens are VRE and enteric Gram-negative
bacteria. For pathogens colonizing the respiratory tract or skin, such as
MRSA, within-hospital-transmission is most important, but the vicin-
ity of these body surfaces to other people may allow cross-transmission
even after hospital discharge.

Second, we assumed that spontaneous development of resistance
was insignificant as compared to transmission. Again this holds true
for VRE and MRSA, as resistance in these pathogens is based on the ac-
quisition of large genetic elements that will not emerge through a few
successive point mutations. The assumption implies that the model
should be slightly adjusted for antibiotic agent & pathogen combina-
tions for which single point mutations can lead to resistance, as in the
case of quinolone antibiotics and Gram-negative bacteria.

Third, we assumed that antibiotic selection facilitated a transition
from being colonized to becoming a potential spreader of resistant bac-
teria. There is strong clinical evidence for this process, especially for
VRE, enteric Gram-negative bacteria and MRSA. Multiple risk factor
analyses have identified broad-spectrum antibiotics as independent
risk factors for colonization and spread of these pathogens. For VRE it
was demonstrated that antibiotics not active against VRE increased the
quantitative amounts of VRE per gram of feces and that with higher
colonization density was associated an increased shedding of VRE in
the inanimate surroundings of the patient, thereby increasing the risk
for cross-transmission.

Fourth, the models used are mostly deterministic. We did consider
the probability for a hospital to be infected, but we did not look at ac-
tual realizations. This prevents us from making a good prediction of,
for instance, how long a hospital that takes quarantine measures can
escape infection, see [Andersson and Britton, 2000].

Fifth, we have assumed that our parameters, such as antibiotic con-
sumption, are constant in time.

And finally, when determining the wave speed for the spreading
velocity we have neglected direct patient transmission between hospi-
tals. This, of course, is not consistent with real practice, although in-
fection control measures are usually stringent when a patient is trans-
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ferred from another hospital.

Considering all the simplifications and assumptions our analyses
identify three important points. The rate at which individuals lose col-
onization after hospital discharge is the major determinant for the ulti-
mate level of carriers in the community. When this rate is low, the frac-
tion of carriers can become quite high, even if the basic reproduction ra-
tio is just slightly larger than 1. However, reliable estimates of w, based
on clinical experiments, are hardly available. Colonization with VRE
can persist for at least five years [Byers et al., 2002; Baden et al., 2001],
while reported average duration of colonization with MRSA ranges
from three until 40 months [Mitsuda et al., 1995; Scanvic et al., 2001;
Sanford et al., 1994]. As this parameter is of crucial importance for the
prevalence of resistance in the community, studies determining this pa-
rameter for different pathogens are urgently needed. Moreover, these
findings provide, at least on a theoretical basis, justification for the
use of therapies that can increase w in order to prevent emergence of
multiple-resistant nosocomial pathogens in the community. One could
think of antimicrobial eradication strategies or suppressing the resis-
tant flora by competition with other microorganisms (e.g., probiotics).

Another finding is that a relatively small population, characterized
by frequent admissions and high risks for colonization with resistant
microorganisms, can maintain nosocomial endemicity even when a
crude estimate of the basic reproduction ratio would suggest other-
wise. Such populations usually consist of patients with some form of
severe underlying illness, thereby increasing their risk of successful
colonization with nosocomial pathogens and the subsequent develop-
ment of infections. These infections must be treated with antibiotics
and necessitate hospital admission. In a cycle of events, the individ-
ual components of the transmission processes are enhanced. This is
comparable to the effect of a so-called core-group of individuals for
sexually transmitted diseases. Examples of such small high-risk popu-
lations are haemodialysis patients for VRE, [D’Agata et al., 2002b], and
MRSA and cystic fibrosis patients for Pseudomonas aeruginosa.

In the final analyses we investigated the influence of spatial struc-
ture on the spread of resistant pathogens in the community and in other
(hospital) settings, and determined the effects of various infection con-
trol measures. From the traveling wave solution we determined the
wave speed. One of the possible infection control measures is to put a
newly hospitalized patient (usually a patient with an increased risk for
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being colonized with a resistant strain, such as patients coming from
a setting where colonization with resistant bacteria is endemic) into
quarantine. This procedure will act as a double advantage, as it will de-
crease both the likelihood that this patient will spread bacteria to other
patients and, vice versa, the risk for the quarantined patient to acquire
colonization. In our simplified model of only three hospitals, we find
that an individual hospital taking such measures is able to control the
nosocomial spread of resistance for quite a long time. However, when a
substantial part of the community population becomes colonized, due
to discharges from other hospitals, quarantine measures will lose their
effectiveness. In fact, in that situation patients admitted from the com-
munity, at high-risk for being colonized, need to be quarantined as well.
Evidently, it will be more difficult to identify these patients than pa-
tients directly transported from other, suspected, settings. In addition,
the hospitals’ capacity for quarantine measures will be exhausted in
due course. An example of this situation is the Dutch MRSA-policy.
The Netherlands are surrounded by countries where colonization with
MRSA is endemic within hospitals. Colonization and infection rates
with MRSA in Dutch hospitals are still < 1%. All patients that have
been hospitalized abroad and that are transported to a Dutch hospital
are put into quarantine until proven not to be colonized with MRSA.
In case of colonization, the patient is kept into strict isolation until the
microorganism has been eradicated (with antimicrobial agents) or un-
til the patient is discharged from the hospital. This policy has been
successful for the last twenty years. However, nowadays the number
of patients seeking medical help abroad, especially in other countries
of the European Union, is increasing and the financial possibilities for
maintaining high effectiveness of detection, isolation and eradication
are decreasing. In addition, a community-reservoir of MRSA seems
to be building, further enlarging the risk of unnoticed introduction of
MRSA into the hospital setting. With some modifications, the model
can be used to determine the effects of these changes on the dynamics
and to predict the success of this policy in coming years. The model
could also be used to estimate the measures necessary to reverse a situ-
ation of nosocomial endemicity. In summary, our model describes how
hospital settings can act as driving forces of antibiotic resistance in the
community and identified some pivotal variables in the overall dynam-
ics. With slight modifications the model could be used to analyze and,
may be, predict changes in the dynamics for specific antibiotic-resistant
pathogens.
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Chapter 3

The effect of intervention
measures on the spread of
MRSA

3.1 Introduction

Nosocomial infections with Methicillin-resistant Staphylococcus aureus
(MRSA) have become a major problem in most European and Ameri-
can hospitals. MRSA-infections are associated with increased mortality
compared with MSSA [Cosgrove et al., 2003] and in countries like the
UK, USA and Greece, the fraction of MRSA isolates among the inva-
sive S. aureus isolates has increased to more than 40% [Reacher et al.,
2000]. In the Scandinavian countries and the Netherlands, in contrast,
MRSA is still just a minor problem. In these countries a stringent policy
of isolating colonized patients and screening high-risk patients is being
followed (the so-called “search and destroy” policy) [Werkgroep Infec-
tie Preventie, 2003]. A recent paper [Cooper et al., 2004], provides an
excellent overview of the nature of an MRSA epidemic and the major
influence of re-admission of colonized patients. (Typically, per admis-
sion, a colonized patient transmits the pathogen insufficiently to other
patients, to generate an outbreak. However, due to re-admission of
patients who are still carriers, the prevalence within a hospital can in-
crease to high levels.) In the setting analyzed in that article, however,
only patients found to be colonized with MRSA by way of standard
clinical cultures are isolated, which does not resemble the Dutch ap-
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proach. In the Netherlands, all patients in the ward are screened for
MRSA after a patient has unexpectedly been identified as MRSA car-
rier and, when positive, are put into isolation. Moreover, all high risk
patients (patients who were colonized with MRSA on a previous hospi-
talization or patients recently hospitalized in a country with a high en-
demic level of MRSA in hospitals) are isolated on admission and only
released from isolation when they are proven to be uncolonized. How-
ever, the relative contribution of each of these interventions is unknown
[Voss, 2004].

To evaluate the effects of different interventions, we use two mod-
els, an analytical compartmental model of a hospital with two-level
mixing and a more detailed simulation model. The majority of acquisi-
tions occur within a ward, with low probability of MRSA-transmission
to patients in other wards. As the depletion in the number of suscepti-
bles is much faster in a small unit than in the hospital as a whole, the
compartmental structure in itself already reduces the transmittability
of MRSA. The key point, however, is that the compartmental structure
allows us to analytically model the Dutch MRSA-policy. The main dif-
ference with the standard two-level mixing models (see e.g. [Ball et al.,
1997]) is that the individuals within a unit can be replaced due to ad-
mission and discharge of patients. Therefore the size of an outbreak
within a unit can be larger than the (finite) number of beds within the
unit.

For the pathogen to persist, the expected size of an outbreak mul-
tiplied by the probability that a patient still carries the pathogen on a
next admission, should be above 1. Our aim is to calculate the expected
size on the basis of meaningful and plausible assumptions. Knowing
how the size of an outbreak depends on transmission and other param-
eters, we can derive the critical values of these parameters. Based on
these critical parameters, we can determine the effects of each of the
components of the ‘search and destroy” policy.

In the sequel the results of the analytical model will be analyzed
by the simulation model. The advantage of this approach is that preva-
lence of MRSA in the community can be monitored as a function of time
and that confidence intervals for the prevalence can be constructed.

The simulation model is also used to analyze all kinds of exten-
sions of the analytical model, such as several hospitals with different
intervention measures, heterogeneity between wards (inclusion of in-
tensive care units (ICU’s)), the effect of persistently colonized health
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care workers, and the possibility of superspreaders. Both sections can
be read separately according to the interest of the reader. Section 3.2
is probably more suitable for readers with some background in math-
ematics while Section 3.3 is also intended for readers without such a
background.

3.2 An analytical model

3.2.1 A compartmentalized hospital
A single unit

Suppose a unit consists of N beds. We want to calculate the expected
size of an outbreak. Due to the finite size of a unit and the stochastic
nature of transmission, the expected size of an outbreak will be a finite
number.

The dynamics in the ward is generated by two processes, transmis-
sion of the pathogen, and discharge and admission of patients. We
assume that admission and discharge of patients happen at the same
fixed time of the day. In particular, we assume that newly admitted
patients are not colonized, i.e., the outbreak is triggered by just one
exceptional case. (When the prevalence in the community is low and
when the typical size of an outbreak is small, the probability that a sec-
ond colonized individual in the community enters the hospital during
the period of the outbreak is small.)

We also assume that the only route of transmission is cross transmis-
sion in which the rate for a susceptible patient to acquire colonization
is proportional to the fraction of the beds that is occupied by colonized
patients [Bonten and Weinstein, 1996; Ferrer et al., 2001; Grundmann
et al., 2002]. This implies that the number of contacts during which col-
onization could be transferred is independent of the number of patients
in the unit. For instance, when health care workers are the vectors of
transmission and the per patient number of contacts with health care
workers per day is independent of the size of the unit, the assump-
tion is valid. Let P(y|x) be the probability that there are y colonized
patients in the unit at time ¢ + 1 just before discharge and admission,
given that x colonized patients were present in the unit at time ¢ just
after discharge and admission. For simplicity, we assume that uncol-
onized patients can acquire colonization only from those patients who
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were already colonized after admission and discharge and not in a two
step procedure during one and the same day. With these assumptions,
the probability per susceptible patient per day to acquire colonization
is given by (1 —e ﬁ) and the P(y|z) is the binomial distribution,
i.e., the probability P(y|x) is given by (0 < z,y < N):

0 ify<x
P T) = N —z —3= y-T —B<= N-y :
(y| ) ( o x )(16 51\@1) (6 6N—1) 1fyZSU
3.1)

with 3 the transmission parameter. (We use the factor V — 1 for later
convenience to ensure that the expected number of acquisitions in the
first day after admission to a ‘virgin’ ward is independent of the size of
the ward for small (3, see page 61 and [Ball et al., 1997].)

The number of occupied beds in the unit is assumed to be constant,
i.e., we assume that all discharged patients are immediately replaced by
newly admitted patients (who we have assumed to be uncolonized).
We assume the length of stay to be independent of the colonization
status of a patient and exponentially distributed with discharge rate 2,
where d > 1 is the mean length of stay in the unit. Finally we assume
that colonization is persistent during the stay in the unit.

The probability P(z|y) that there are z colonized patients after dis-

charge and admission, given that there were y colonized patients in the
unit before discharge and admission, is given by (0 < y, z < N):

) 0 ifz>y
P(zly) = ( ) > (%)yfz (1 . é)z if 2 <y (3.2)

z

Using a discrete convolution of transmission and discharge we find that
the transition probabilities f(b|a) that there are b colonized patients in
the unit directly after discharge and admission at time ¢ 41, given there
were a colonized patients in the unit directly after discharge and ad-
mission at time ¢, are given by:

N—a
fbla) = > P(a+ jla)P(bla + ) (3.3)
7=0

The expected number of acquisitions of colonization in a transition
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from a colonized patients to b colonized patients is given by:

Y2t iP(a+ jla)P(bla + j)
f(bla)

We can now calculate the expected size of an outbreak in a unit in terms
of these quantities. Let F(k) be the expected total number of new ac-
quisitions in the unit when there are k colonized patients in the unit
directly after admission and discharge. First step analysis then shows
that the £(k) satisfy the following set of equations:

g(av b) =

(3.4)

E0)=0
E(R) — o (3.5)
(k) = > f(blk) (E(b) +g(k,b)) 1<k<N
b=0

We are especially interested in E/(1), as this is the expected number of
acquisitions when a single colonized individual enters a “virgin’ unit.
This number is an ingredient for computing the critical transmission
parameter (related to Ry) as we will show later.

A hospital with many units

Apart from transmission within a unit, transmission between units is
possible. From the expected size of an outbreak within a ward (£(1) as
defined in the previous section), we can calculate the expected size of an
outbreak in the hospital as a whole (T") in which the outbreak may affect
several units. To determine 7', we consider a hospital with an infinite
number of wards, each of size N. This assumption ensures that when
two patients outside the initial unit are infected by patients in the initial
ward, these two infected patients will never stay in the same ward.
When a single colonized patient is hospitalized, we assume that the first
acquisition occurs with probability p in the unit of the colonized patient
and with probability (1 — p) in another unit, i.e., if we ignore depletion
of susceptibles, a fraction p of all acquisitions occurs within the own
unit of a patient. The expected number of acquisitions in the own unit
due to the index patient during the first day is (V — 1)(1 — e*%) ~ (3
where the approximation is good when % is small. The expected
number of acquisitions in other units due to the index patient during
the first day is then given by ﬁ%. (This coincides with mass action

with transmission parameter 3 %.)
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The expected size of the total outbreak 7" (excluding the index case)
satisfies a consistency relation (equation (3.6)). The index patient infects
on average F(1) individuals within its own ward. The index patients
can also infect patients in other wards. On average, one colonized in-
dividual infects 3= patients outside its own ward per day. The ex-
pected number of infection outside its own ward by the index patient
is than given by lp%pd. The other E(1) patients in the ward can also
infect patients in other wards provided they are not immediately dis-
charged after acquisitions (probability d%dl). Therefore, the expected
number of acquisitions due to patients in the initial ward is given by
(l;fp) Bd(1 + 2ZLE(1)). As we assumed an infinite number of wards,
each of these acquisitions will occur in different wards. These patients
are colonized themselves, and they can transmit the pathogen provided
they are not immediately discharged after acquisition. Therefore, the
consistency relation for 7" is given by:

(1—-p) d—1 d

T:Eﬂ}+I)[Mﬂ+dEu»u+;lﬂ. (3.6)

This leads to:
_ pE() + (1 p)Bd(1 + 41 E(1)
p—(1—p)Bd—1)(1+ SLE(1)

provided this expression is positive. Note that when the number of
wards is finite the assumption that all acquisitions outside the own
ward occur in virgin wards does not hold anymore. However, as the
expected number of transmissions for a patient is maximal when all
other patients within the unit are susceptible, the assumption will lead
to an overestimation of the expected size of an outbreak 7" and this
number can be regarded as a worst case scenario.

(3.7)

To determine the effect of the depletion of susceptibles within a unit,
we first calculate the expected size of an outbreak in a hospital in which
each ward is of infinite size. In one unit of infinite size, the expected
number of patients which acquire colonization from the index patient
is given by 3d and the expected number of patients who acquire colo-
nization from the index patient and are not discharged before they can
spread is given by 5(d — 1)(= Ra4). Introduction of the pathogen can
only lead to a major outbreak if R4 > 1. If R4 < 1, the expected size of
an outbreak (excluding the index case) in wards of infinite size satisfies:

Bd

B(1) = fd+ RaB() & B() = 1~ (3.8)
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which can be inserted in equation (3.7) to obtain the expected size of an
outbreak in a hospital with an infinite number of wards, each of infinite
size. However, the insertion of (3.8) in equation (3.7) can be omitted by
realizing that the outbreak size in a hospital in which all wards are of
infinite size, the transmission parameter in a unit is 3 and a fraction
1 — p of the expected acquisitions occur between units, is the same as
the outbreak size in a hospital in which all acquisitions occur within the
unit and the transmission parameter is 5 + 3 1%1’ = %. Hence we have
that the outbreak size 7" in a hospital with units of infinite size will be:

B8
»@ Bd

1—%@—1):p—ﬁw—lf 39)

Note that the p-dependency in this relation only arises due to our def-
inition of the transmission parameters; p does not effect the number
of transmissions within a unit but effects the number of transmissions
between units.

Re-admission

When T' < oo, MRSA cannot persist in the hospital without re-intro-
duction. However, colonized patients discharged from the hospital
may carry MRSA for a long period of time. When such a carrier is
re-admitted, a new outbreak in the hospital can occur. Suppose the
probability that a patient leaving the hospital while being colonized
will re-enter the hospital at some later time while still being a carrier
is & (i.e., when the decolonization rate is x and the hospitalization rate
ish, &= ﬁ). When we assume that a person who dies is immedi-
ately replaced by an uncolonized individual, we can incorporate the
probability that an individual dies while still being colonized in the de-
colonization rate .

For the pathogen to be able to persist in the community as a whole
(both extramural and intramural), the expected size of an outbreak T'
should exceed the critical value T, which is defined by the relation:

(1+T)¢=1. (3.10)

In a hospital consisting of wards of infinite size, the critical value for 3
is given by:
_ p(1=¢

K
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With wards of smaller size, the recursion (3.5) has to be solved after
which (3.7) and (3.10) can be used.

A small unit size can by itself already reduce transmission. The
reason is that the structure works against large outbreaks as the pool
of susceptibles declines faster in a small unit than in the hospital as a
whole, see Figure 3.1(a) for the effect of the depletion of susceptibles in
a more complex situation

3.2.2 Interventions for a single type of patients

We will now calculate the relative increase in the critical transmission
parameter, 3., for different infection prevention measures compared to
a hospital not implementing any additional infection prevention mea-
sures.

Isolation of identified carriers

Samples for microbiological culturing are frequently obtained from pa-
tients with clinical suspicion of infection. Suppose that patients colo-
nized with MRSA are detected as carriers in this way with probability
v per day. When patients known to be colonized with MRSA are trans-
ferred to an isolation room to prevent further spread, colonized patients
are isolated at frequency v. For modeling simplicity we assume that all
cultures are performed at the same moment of the day, immediately
before the moment of discharge and admission, that culture results are
available at once, that cultures are 100% reliable and that isolated pa-
tients remain in isolation till discharge and, therefore, no longer spread
MRSA to other patients. From a modeling perspective, we can, there-
fore, assume that patients who are found to be colonized are imme-
diately discharged as they no longer participate in the transmission
process. Note that we implicitly assume that the number of patients
treated in isolation does not affect the number of patients not treated in
isolation. With these assumptions, the effective discharge probability

per day for a colonized patient becomes W. Although the dis-
charge probability for uncolonized patients remains 3, we can assume

it to be H(‘%l)”, as the replacement of an uncolonized patient by an-
other uncolonized patient has no effect. This policy is incorporated in
the model described by [Cooper et al., 2004] for a hospital consisting
of only one unit. For a ward of infinite size, the relative increase in the
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critical transmission parameter will be 1 + (d — 1)v (provided the iso-
lation capacity is sufficiently large). For a hospital consisting of wards
of finite size, equations (3.5), (3.7) and (3.10) have to be solved in which
d should be replaced by m. The efficacy of this intervention re-
lies mainly on v, the detection probability of MRSA-colonization, as the

average length of stay of hospitalized patients can hardly be altered.

Screening and isolation

The hospital structure can be used for an extension of the previous iso-
lation policy: An active screening strategy as applied in the Nether-
lands. A patient identified as MRSA carrier will be transferred to an
isolation room and all patients that may have had contact (directly or
indirectly) are screened for colonization with MRSA. In our model, we
replace screening of all contact patients by screening of all patients in
the same unit as the index-patient, as the majority of transmissions oc-
cur within the unit. Again, identified carriers among these contact pa-
tients are transferred to an isolation room. This will, ideally, terminate
the outbreak within the unit immediately, though spread may continue
in other wards. This policy can therefore only be effective when the
majority of acquisitions occur in the same unit.

Again we assume that patients are identified as MRSA carriers by
standard clinical cultures with probability v per patient per day and
that these cultures are performed directly before the moment patients
can be discharged. We can incorporate these clinical cultures in the
‘discharge” probabilities. Without a clinical culture performed in any
of the colonized patients (probability (1 — v)Y, with y the number of
colonized patients), the number of colonized patients can only decrease
due to discharge. When at least one colonized patients is identified as
carrier, all other patients in the unit will be screened and colonization
is detected with probability 6 per carrier. In this case the discharge
function is given by:

P(zly) =
0
Yo

( .
y(g) (1—v)" vi (y;j) (Fem20)" {5t (o))

j=1
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When the tests are 100% reliable and all contact patients are screened
(@ = 1), culturing of at least one colonized patient leads to detection
of all colonized patients. (In terms of the pathogen, this can be seen as
a birth-death-catastrophe process.) As all colonized patients are trans-
ferred to isolation rooms, all remaining patients will be uncolonized.
and the discharge function simplifies to:

0 ifz>y

P(zly) = Z B a-H"a-vy ifo<z<y (312

(IT—vp(H)+0-Q1-v¥) ifz=0

Using (3.3) and (3.4) with the new ‘discharge” function and (3.5), (3.7)
and (3.10), the new critical value of the transmission parameter can be
calculated.

Screening on admission

Another part of the Dutch policy is to isolate patients immediately af-
ter admission when it is known that they were colonized with MRSA
on a previous admission. Only when colonization is excluded, isola-
tion measures are withdrawn. We define S as the expected number of
colonized patients, per outbreak in the hospital as a whole, who were
identified as MRSA carriers during hospitalization (including the index
patient). When no additional screening of contact patients is performed
after demonstration of colonization, the number S satisfies the relation:
14

S = m(l +T) (3.13)
as each colonized patient has a probability w to be detected.
Note that T" should be calculated using an effective discharge proba-
bility of HHd-L
carriers.

, see the previous section about isolation of identified

When the efficacy of this policy is g in the sense that a fraction 1 — ¢
of the previously colonized patients is missed by the screening, we find
the following relation for criticality:

§d—-9)

Ty (3.14)
(The last term comes from the geometric series: Of the S patients, a
fraction (£g)7~1¢(1 — g) will be able to spread at the j* admission and
could not spread at any previous admissions.)

(1+T-8)E+S
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The Dutch ‘search and destroy’ policy

Now suppose that contact patients are screened for colonization in case
of an unexpected case of MRSA colonization and that previously col-
onized patients are screened on admission. To determine the efficacy
of this policy, we not only need the expected size of an outbreak (7'),
but also the expected number of detected patients per outbreak (5). As
the probability that colonization at a patient is detected depends on the
total number of colonized patients in the unit (because of the search
strategy), we introduce S(k) as the expected number of detected cases
in an outbreak in a single ward when the outbreak starts with k (unde-
tected) patients. The S(k) satisfy the set of equations:

S0)=0
N
S(k) = 2 f(blk) (S(b) + (k. b)) (3.15)

where we should use equation 3.11 in the definition the transition prob-
ability f (equation 3.3) and where h(z, y) denotes the expected number
of detected patients in a transition from x colonized patients to y colo-
nized patients. h(z,y) is given by:

N—zxz+j—y

h(x,y) = m JZ:O IZ (J} +]|$) ( X ‘Z"] ) (1 - V)x+j—iyi

=1

4+ 44— _ r+j—i—y, . ..
(1? j Z) (%-ll)e) (T (1-0))” (z+e+(1979> (xﬂ_z_y))

y a
(3.16)
When the screening will reveal every colonized patient (f = 1), equa-
tion (3.15) simplifies to:

S(0)=0
N N=k : : ~ (3.17)
S(k) = b;f(b\k)s(b)Jr ;0 P(k+jlk) (k+5) {1—(1—v)*}

where we can use (3.12) to determine the transition probabilities (3.3).

To determine the expected number of transmissions from the ini-
tial ward to other wards, we need to know the severity of the outbreak
within a unit, i.e., the total number of patient days in the initial ward
with patients being infectious. (We weight each day of the outbreak
in the unit according to the number of patients in the unit that are in-
fectious.) Let D(k) be the severity of the outbreak within a unit, i.e.,
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before the natural fade out of the outbreak or the detection of the out-
break, given there are initially & infectious patients in the ward. The
D(k) satisfy:
D
D (3.18)

M=

0
(k) =k+ > f(0lk)D(b)

The expected total number T' of patients infected during an out-
break (which may spread over several wards) and the total number S
of detected patients satisfies the equations:

T =EQ) + 28D+ A7)

S =5(1) + LD (v + (1 - v)4LS) (3.19)

With these results, (3.19) and the relation (3.14), we can determine the
effect of the Dutch policy.

Active decolonization

Finally we incorporate the possibility that patients treated in isola-
tion are actively decolonized: Suppose that colonization is successfully
eradicated in a fraction ¢ of the patients. This active decolonization can
be incorporated in the critical relation:

(L+(T - 65) — (1- 9)S)¢ + S4ERGD =15

E(1-d)g (3.20)
§d-¢)(1-g) _ :
1+T-9¢+S 1 —Ei—d)g — 1

3.2.3 A core group

In reality there is heterogeneity in the frequency of admission between
individuals. Some individuals visit the hospital often, such as for exam-
ple haemodialysis patients and elderly. To take heterogeneity to some
extent into account, we repeat the analysis of section 3.2.2 for two types
of individuals (core group, non-core group) which differ only in their
probability to be still colonized with MRSA when on re-admitted. In-
dividuals from the core group are hospitalized more frequently. If the
spontaneous decolonization rate is the same for the core and the non-
core group or if the decolonization rate is smaller for the core group,
the probability to be colonized upon re-admission is higher for the core
group. As the expected size of an outbreak within the hospital is not
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altered by the introduction of two types of patients with identical be-
haviour within the hospital, the calculation of the outbreak size T is
identical to the situation without a core group. (Use (3.3), (3.4), (3.5),
(3.7) and (3.11), (3.12) or (3.2) depending on whether there is an active
search policy in case of an unexpected case of MRSA-colonization or
not, respectively.) However, the critical outbreak size T will change. A
core group will enhance the importance of re-admission and, therefore,
a lower R4 can lead to persistence in the population (both intramural
and extramural). As for a lower R4 the average size of an outbreak
will be smaller, the depletion of the number of susceptibles will also
be smaller. Therefore, the effects of the compartmental structure of the
hospital on the critical transmission parameter will be smaller in case of
a core group. Moreover, relative effects of elements of the ‘search and
destroy” policy will be different.

Let & be the probability that a colonized patient of type i is still
colonized when re-admitted and let v be the expected fraction of hos-
pitalized patients of type 1. When all other characteristics of the two
types of patients are identical and previously colonized patients are not
screened when re-admitted to the hospital, the pathogen can persist if
and only if the largest eigenvalue of the next-generation matrix

(VT + )& VT,
((1—wT& «1—wT+1M2> (3.21)

exceeds 1. The largest eigenvalue is equal to 1 when the outbreak size
T equals:
(1-8&)(1 -&)
T, = 3.22
G —&) (6 - &) 622

The largest eigenvalue can be seen as the reproduction ratio between
outbreaks in a hospital.

Isolation of identified carriers

We will now investigate the effect of different intervention measures in
the presence of a core group. If the only intervention is to isolate pa-
tients known to be colonized with MRSA by clinical cultures, equation
3.22 still applies but 7" should be determined using an effective length

of stay of % in (3.2) and (3.7), see Section 3.2.2.
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Figure 3.1: (a): Relative increase in critical transmission parameter £, for dif-
ferent sizes of units without any interventions compared to a hospital consist-
ing of wards of infinite size (i.e., without depletion of susceptibles) without
any intervention. On average, 15 of the colonized patients of type 1 and 1
of colonized patients of type 2 is still colonized when re-admitted. 50% of
the hospital is occupied by patients of type 2. 90% of the acquisitions occur
within units. (b): Relative increase in critical transmission parameter . for
different intervention strategies compared to a hospital consisting of wards of
identical size but without any intervention strategy. The symbols “r” stands
for isolation of patients identified as MRSA-carriers upon clinical culture re-
sults, “s” stands for screening of all patients in a unit once one patient is found
to be colonized, “a” stands for screening on admission of patients known to
be colonized on previous admission with efficacy g = 0.88 and “d” stands for

decolonization with efficacy of 20%.
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Screening on admission

Now, screening of patients, known to be colonized during previous
hospitalization with efficacy g, is added. Without additional screening
of contact patients in case of an unexpected case of MRSA-colonization,

each colonized patient has a probability to be detected of ﬁ Let
v -v)5

n(v,d, g,&;) be the probability that a patient of type ¢ who acquires col-
onization during hospitalization will ever return to the hospital while
still being colonized but without being notified as such. When coloniza-

tion was not detected during hospitalization (probability 1 — m),
d

the patient is still colonized at the next admission with probability &;.
When colonization was detected during hospitalization, the patient has
a probability £€™g™ (1 — g) to be able to transmit during the m'* ad-
mission without the ability to spread at any of the previous admissions.
Therefore we have that:

_ B v v 1—g
77(V,d,97§)—f<1 V+(1—V)5+V+(1—V)311_§9> (3.23)

Note that n(v, d, g,£) = £ when the efficacy g of screening on admission
of high-risk patients is 0. The next generation matrix is given by:

( (VT + 1)n(v,d, g,61) YTn(v,d, g, &) > (3.24)
(1 =y)Tn(v,d,g,8) (1 —=T)+1)n(v,d, g,&) '

where T" again should be determined using an effective length of stay of
%. The pathogen can persist if and only if the largest eigenvalue
of the next generation matrix exceeds 1.

The Dutch ‘search and destroy’ policy

With active search for MRSA in case of an unexpected identification
of colonization with MRSA upon clinical cultures and screening on ad-
mission of previously colonized patients with efficacy g, the calculation
is less straightforward as the number of detected patients of type i de-
pends on whether the initial colonized patient was of type ¢ or not.
As the typical size of an outbreak is small, this cannot be neglected.
Let Q(k) denote the probability that colonization of the index patient
is detected, given that there are k£ colonized patients in the unit (in-
cluding the index patient) at the start of that day. We first consider the
case when screening detects all colonized patients in the unit (f = 1).



72 The effect of intervention measures on the spread of MRSA

Suppose that during that day j uncolonized patients in the unit acquire
colonization. If the colonization of at least one of the k+ j colonized pa-
tients is detected (probability 1 — (1 — v)**7), all patients in the unit will
be screened and the colonization of the index patient is also detected.
If colonization of none of the k£ + j patients is detected by clinical cul-
tures, colonization of the index patient can only be detected if the index
patient is not discharged and the probability of detection will depend
on the number of colonized patients that remain in the unit. Therefore,
the Q(k) satisfy the following relations for 1 < k£ < N:

N—k ,
Q(k) = Y P(k,k+j) (1-(1—v)7tF) +

Jj=0

- k
TPk - S (T ()0 0 o)

=\ 2
When 6 # 1, Q(k) satisfies:

Q(k) =
J:Z—:P(k,kJrj) (2 (k”) (1—v)kti (5)’“”‘2 (1-3)" 75Q(=)+
J

pe z
ki ki (o g beiss (k47— 1o\ r+i—i—z
zz(i)u—u)w( )(d )

z=01=1 z

(F1-0)" 555 {ZJF(]‘“FJ Z)ﬁJFZQ(Z)}

(3.26)
Let T;; denote the expected number of new cases of type j when the
initial case was of type i and let S;; denote the expected number of
detected cases of type j when the initial case was of type i. We obtain
as next generation matrix:

(51(1+T11—511)4-511%(1515) f(T21—521)+521%(,15:Z) ) (3.27)

&(Ti2—S12) + 512200 &5(14Tho— Sap) + 5 U2

1-&29 1—&29

The pathogen can persist if and only if the largest eigenvalue of this
matrix exceeds 1.

The calculation of Tj; is easy, as 7" is defined as the expected size of
an outbreak excluding the index patient. Therefore, on average, a frac-
tion y of T" patients will be of type 1 and a fraction (1 —+) of type 2. The
calculation of S;; is more complex, as S is defined as the expected num-
ber of colonized patients for which colonization is detected. Therefore,
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index patients also contributes to S and we have to use the probability
Q(1) that colonization is detected in the index patient. We obtain:

T =~T i € {172}
TZ’QZ(l—’y)T iE{l,Q}
S =75+ (1 -70Q(1)
S12 = (1= 7)(5 — Q1)) 629
So1 =S —4Q(1)
Sz = (1 —7)S ++Q(1)

Active decolonization

When colonized patients of type i treated in isolation rooms are actively
decolonized with efficacy ¢;, the relations for T;; and \S;; in system 3.28
change. The new values (denoted with a prime) are given by:

Si; = Sii(1— ;)
/ ! ! (3.29)
Tj; = Tij — Sij b

The effects of different prevention strategies are shown in Figure 3.1.
Note that the calculation in this section can be extended to a situation

with more several core-groups, each with a different re-admission rate.

3.2.4 Results and conclusions of the analytical model

As shown in Figure 3.1, small units can be an effective way to prevent
transmission as the number of susceptible patients decreases faster in
small units than in large units. Also, the relative effects of interventions
depend on the unit size. Screening of contact patients after identifica-
tion of a MRSA-carrier is more effective for large units while screen-
ing on admission is more effective for small units. However this size-
dependency is not very strong.

The Ry-value for MRSA is likely to be between 1 and 1.5. Ry must
be larger than 1 as endemicity has been established in hospitals in the
US and UK. it should be above 1 and values larger than 1.5 are likely
to lead to higher endemic levels. Based on this estimation and the re-
sults depicted in Figure 3.1, an intervention based on the isolation of
patients found by clinical cultures alone is unlikely to be effective and
should not be advised as policy. Combining this policy with screen-
ing on admission of patients who were colonized on a previous ad-
mission is more likely to be effective. Screening of contact patients in
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Figure 3.2: Left (a, c): The effects of parameters changes on the relative in-
crease in the critical value of the transmission parameter 3. for a hospital with
10-bed units compared to a hospital with wards of infinite size, both in ab-
sence of infection control measures. Right (b, d): The relative increase in the
critical value of the transmission parameter g, for different intervention mea-
sures (see Figure 3.1 for definitions) in a hospital with wards of 10 beds com-
pared to a hospital with wards of 10 beds without any intervention strategy.
p=0.9,¢9g=0388 & =0.5 & = 0.1. (a) and (b): varying +, (percentage of the
hospitalized individuals that belong to the core group). Mean length of stay is
8 days, clinical cultures leading to identification of MRSA are performed once
per month on average. (c¢) and (d): Varying the mean length of stay in the
hospital. v = 0.5. Clinical cultures are performed once per month on average.
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Figure 3.3: (a): Relative increase in the critical value of the transmission pa-
rameter (3. as a function of the detection rate of MRSA for a hospital with
10-bed units compared to a hospital with wards of infinite size, both in ab-
sence of infection control measures. (b): Relative increase in the critical value
of the transmission parameter J. as a function of the detection rate of MRSA
for different intervention measures (see Figure 3.1 for definitions) in a hospital
with wards of 10 beds compared to a hospital with wards of 10 beds without
any intervention strategy. p = 0.9, g = 0.88, &, = 0.5, & = 0.1. Mean length
of stay is 8 days, v = 0.5. Without interventions, the culture frequency has no
influence.

case of detection of MRSA in a unit, is more effective for typical unit
sizes than screening on admission. However, combining both strate-
gies, is far more effective and is ‘guaranteed’ to prevent endemicity of
MRSA, even if screening of contact patients and screening on admis-
sion of high-risk patients is not 100% effective (see Figure 3.4). This
explains the success of the Dutch ‘search and destroy’ policy. Although
sporadic outbreaks occur [Vriens et al., 2002], they will not lead to the
start of an epidemic. Additional decolonization of carriers is not very
effective as the decolonization itself often fails.

As can be seen in Figure 3.2, 3.3 3.4, effects of different intervention
measures do not depend on the exact value of the parameters except
on the frequency at which undetected carriers of MRSA in the hospi-
tal are detected. The conclusion in [Cooper et al., 2004], that isolation
of patients identified carriers of MRSA by clinical cultures is effective,
strongly depends on a sufficiently high frequency of clinical cultures.
In contrast, according to our analysis, the ‘search and destroy’ policy is
effective for very low values of the culture frequency (see Figure 3.3(b).)
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Figure 3.4: (a) Effects of the efficacy of decolonization on the critical transmis-
sion parameter 3. in the ‘search and destroy’ policy. (b) Effect of the efficacy
of screening on admission, of patients known to be colonized with MRSA on
previous admission, on the critical transmission parameter (. for different in-
terventions. (c) Effect of the efficacy of screening of contact patients in case of
an detected MRSA-case in the hospital on the critical transmission parameter
0. for different interventions.
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symbol | meaning
v probability of detection of colonization
per colonized patient per day
B transmission parameter
D fraction of acquisitions in own unit
(ignoring depletion of susceptible)
d mean length of stay in a unit
19 P(still carrier on next admission)
g efficacy screening high risk patients
) P(active decolonization successful)
6 P(colonized contact patients is found by screening)
0 fraction of hospitalized individuals of type 1
N size of a unit
T (size of an outbreak in the hospital as a whole)
(excluding the index patient)
S (number of detected patients during an outbreak)
E(1) | (size of an outbreak in a single ward)
D(1) | (infectious patient days per outbreak in a single unit)
Q(1) | P(colonization of index patient detected)

Table 3.1: Parameters and symbols used in the analytical model. P stands for
probability and () stands for the average value

3.3 Simulation model

We use a discrete time stochastic simulation model for the spread of
MRSA, both within hospitals and in the community at large. Our
model has three hospitals of 693 beds, each with its own extramural
community of 200,000 individuals. When a patients needs hospital-
ization, he/she is most likely to be admitted to the hospital of his/her
community (p=0.95), but a small fraction (p=0.05) will be admitted in
another hospital. However, after hospital discharge, all patients re-
turn to their own community. Furthermore, the population is divided
into 2 categories with different health status. A small part of the ex-
tramural population (n=20,000) consists of a core-group, the majority
(n=180,000) belongs to the non-core group. However, the core group
represents on average half of the hospital population. (The only dif-
ference between the core group and the non-core group is the higher
hospitalization rate for the core group population.) All deaths are
immediately replaced by new-borns. These new-borns enter in the ex-
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tramural population and belong to the same community and the same
group (core group, non-core group) as the deaths, ensuring constant
population sizes (see Figure 3.5). All new-borns are uncolonized with
MRSA.

Within each hospital, we use a compartmentalized structure. Each
hospital consists of multiple wards, each of fixed size. We distinguish
between two types of wards. Each hospital has 5 intensive care units
(ICU) and 36 ‘normal” wards consisting of 9 and 18 beds respectively.
On admission, patients either go directly to an ICU or go to a ‘nor-
mal” ward. The length of stay within a unit is exponentially distributed
with a mean of 3 and 7 days for ICU’s and ‘normal” wards respectively.
Patients treated in isolation have an expected length of stay of 20 days
[Fitzpatrick et al., 2000]. Patients discharged from ICU’s are transferred
to a ‘normal” ward, patients discharged from ‘normal” wards return to
their extramural population. Apart from these main flow of patients
in the hospital, patients can be transferred between units (p=0.001 per
patient per day) and between hospitals. (Patients transferred from an-
other hospital constitute 5% of all hospital admissions, see Table 3.2.)
After all these patient flows during a day have been simulated, patients
are admitted from the extramural population to reach the right number
of patients per unit, i.e., to compensate for the discharged patients or
patients who died during hospitalization.

As most individuals carry MRSA asymptomatically, infections only
represent the tip of the iceberg and, therefore, we focus on carriership
of MRSA. Outside the hospital, we assume there are only two states of
colonization: either an individual carries MRSA or an individual is un-
colonized with MRSA (and is susceptible for colonization). Within hos-
pitals, there are uncolonized patients and carriers of MRSA, but some
hospitalized carriers are ‘superspreaders’, i.e., patients who are more
likely to transmit MRSA to other patients and health care workers, e.g.,
because of infected wounds with heavy suppuration, scaling skin dis-
eases or because patients need frequent endotracheal suction due to
copious sputum production. Superspreaders are assumed to remain
superspreaders during their hospitalization.

Apart from the actual colonization status, individuals are distin-
guished upon knowledge about their colonization status. In the extra-
mural community individuals are distinguished upon the fact whether
they were recognized as carrier during the previous hospital admis-
sion (as these patients are screened for colonization in the ‘search and
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destroy policy’). Within hospitals, colonized patients can be known to
be colonized or not known to be colonized. In summary, the model
distinguishes individuals on basis of four characteristics:

1. the colonization status of the patient and knowledge about the
colonization status

2. the community to which the patient belongs
3. the health status of the patient (core group/non-core group)

4. the current location of the patient

We also include health care workers (HCW) in our model. We distin-
guish between two types of health care workers. The first type has
only contact with patients in their own ward. The patient contacts of
the second type of health care workers are not restricted to a single unit
and can occur with all patients in the hospital. All health care workers
stay in the unit for 8 hours and are then replaced by other health care
workers. A health care worker of the first type is assumed to work al-
ways in the same unit. In the ICU’s, the staff-patient ratio is 1-1, in the
other wards 5 HCW are present. Apart from these HCW restricted to a
single unit, there are 80 HCW's per hospital not restricted to any unit.
The number of HCW’s not working in the hospital is determined upon
assuming that HCW work 8 hours per day for 220 days per year.

3.3.1 Dynamics of MRSA

In the extramural community, colonized individuals lose their coloniza-
tion at a fixed rate (average duration of colonization in absence of re-
admission is 370 days). Individuals can acquire colonization in the hos-
pital. Within the hospital, two routes of transmission exist (see Figure
3.6(b)). Patients can either transfer bacteria to other patients (via tran-
siently colonized health care workers) or acquire colonization via per-
sistently colonized health care workers. Patients in ICU have a higher
risk for acquisition of MRSA, due to higher susceptibility for pathogen
acquisition and a higher risk on transmission because of higher contact
rates with HCW. Hence we assume that the transmission rates in ICU’s
are higher than in other units.

Transmission of MRSA is most likely to occur within a unit, but
transmission to other units in the same hospital is also possible (see e.g.,



80 The effect of intervention measures on the spread of MRSA

[Ball et al., 1997]). (The global mass action term is a factor 20 smaller
than the mass action term within a unit (both for direct transmission
(i.e., via transiently colonized HCW) and for transmission via persis-
tently colonized HCW)).

There is no direct transmission from one hospital to another hospi-
tal, but hospitals can ‘infect” each other by the transfer of a colonized
patient from one hospital to another. Finally we assume that patients
treated in isolation, cannot transmit or acquire MRSA.

For most strains of MRSA (and typically the hospital strains) there is
little evidence of transmission in the open population and in most sim-
ulations, transmission in the open population was excluded. (As trans-
mission of MRSA outside the hospital is rare ([Salgado et al., 2003]),
we are mainly interested in the time between two admissions as in this
period individuals may lose colonization. Therefore a realistic descrip-
tion of the open population (see e.g., [Halloran et al., 2002]) seems un-
necessary.) We also performed simulations with transmission in the
open population. In this case we assume homogeneous mixing within
an extramural population belonging to a single hospital. Only a small
fraction of acquisitions outside the hospital (p=0.05) occur between in-
dividuals of different communities (homogeneous mixing between all
extramural individuals).

Patients transferred from foreign hospitals are a source of MRSA for
countries with a low prevalence. We do not model foreign hospitals ex-
plicitly, but for each admission from an extramural community, there is
a small probability that the admission is preceded by a stay in a foreign
hospital during which MRSA may have been acquired. We neglect the
duration of stay in a foreign hospital. With these assumptions, trans-
fer of patients from foreign hospitals is a constant source of MRSA (but
stochastic in nature) which will prevent extinction of MRSA.

3.3.2 Interventions

We explore several intervention scenarios. Within our model infection
strategies can be targeted at different groups. General infection preven-
tion measures like improved hand hygiene effect the risk of acquiring
colonization for all patients within the unit. Other measures can be tar-
geted at patients known to be colonized with MRSA (e.g., isolating) or
at individuals who have a higher risk of being colonized, i.e., patients
known to be colonized on a previous admission, patients who have
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Figure 3.5: The model with 2 communities. Each hospital (denoted by an
“H”) has its own extramural community (denoted by an “E”). Each extramu-
ral community is divided into 2 groups: a core group who visits the hospital
frequently and a non-core group with a much lower admission rate. The ma-
jority of hospitalizations are in the own hospital, however, a small fraction
is hospitalized in another hospital (denoted by the dashed arrow). After dis-
charge, patients return to their initial extramural community. For the structure
within a hospital, see Figure 3.6(a)

been hospitalized in a foreign hospital or members of the core group.

Without any intervention, we assume the per patient probability
per day that colonization is detected by clinical cultures is constant (the
constant v of section 3.2). We consider the following intervention strate-
gies.

e Identified MRSA carriers are treated in isolation rooms.

e High risk patients are screened for colonization on admission
with efficacy 0.88, i.e., in a fraction 0.12 of the colonized patients
that should be screened, either the screening is not performed or
the screening does not lead to detection of the colonization.

o After detection of a colonized patient, all other patients in the
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Figure 3.6: (a) Each hospital consists of 5 ICU’s and 36 ‘normal” wards. Upon
admission, patients either go to a ‘normal” ward or to an ICU. Patients dis-
charged from an ICU, go to a ‘normal’ ward, patients discharged from a ‘nor-
mal’ ward leave the hospital. There is also a small probability that patients are
transferred from one unit (either intensive care or a ‘normal” ward) to another
unit. In each unit, both core-group patients and non-core group patients can
be present as well as patients belonging to the community of different hospi-
tals. Each unit has its own population of health care workers.

(b) There are two levels of transmission: within a unit and between units.
Within a unit, there is transmission between patients (usually via temporar-
ily contamined health care workers). Within a unit there is also transmission
between persistently colonized health care workers and patients. Between
units, transmission occurs at a lower rate and occurs again between patients
(via temporarily contamined health care workers) and between patients and
health care workers who do not belong to a specific unit. Colonized patients
treated in isolation are assumed not to spread MRSA to other patients or
health care workers. Solid arrows correspond to relatively frequent processes,
dashed arrows to relatively infrequent ones.
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same unit are screened for colonization.

o After detection of a colonized patients, all health care workers in
the same unit are screened for colonization and positive HCW are
send on leave.

o When there are two detected carriers of MRSA in an ICU, the ICU
will be closed (with a maximum of 2 ICU’s per hospital) and new
patients are only admitted when at most one carrier is left in the
unit.

e Active decolonization of patients known to be colonized is suc-
cessfully performed in a fraction 0.25 of the patients.

3.3.3 Parameters

All parameters of the size and structure within the hospital and the
structure in the population come from data from the UMCU and the
Martini hospital Groningen (the Netherlands). The frequency of rou-
tine clinical cultures was calculated on the basis of the time between
admission and detection of colonization of index-patients of (typically
small) outbreaks in the UMCU (26.3 days). As some index-cases may
not have been detected, we use a frequency of 0.03.

Transmission rates of MRSA within hospital settings have not been
determined, specifically, transmission rates between wards and trans-
mission rates between patients and health care workers are not well
known. Although Ry > 1 (as there is an endemic situation in many
countries), the typical size of an outbreak in a hospital is small. There-
fore the R4-value, defined as the average number of secondary cases
by one primary case when other patients are susceptible during a sin-
gle hospital admission of the primary case will be less than 1 although
staff deficiency may lead to an R4 > 1 [Grundmann et al., 2002]. We
fitted values for different transmission parameters, with By > 1 and
R4 < 1, to the prevalence curve in the hospital and community as a
function of time as observed in the US and the UK [Reacher et al., 2000].
We hypothesized that transmission between patients (via temporarily
contamined health care workers) is 8 times more likely than that an
uncolonized health care workers becomes a persistent carrier after con-
tacting a colonized patient or that a persistently colonized health care
worker transmits MRSA to an uncolonized patient and that transmis-
sion within a unit was three times more likely in an ICU compared
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to a ‘normal” ward and that superspreaders are 10 times as infectious
as ‘normal’ colonized patients. Finally we assume that transmission
within a ward is 20 times as likely as transmission between wards.

Efficacy of active decolonization is also not exactly determined.
Data [Fitzpatrick et al., 2000] suggest that colonization is successfully
eradicated in 25% of the cases. In the simulations with transmission in
the open population, values for the basic reproduction number outside
the hospital were chosen less than or equal. (Otherwise MRSA can
persist without hospitals.)

With a high prevalence of MRSA, a shortage of isolation beds may
well develop [Cooper et al., 2004]. In our main analysis we assume
that the number of isolation beds will never be a restricting factor and
wards will never be closed because of an outbreak of MRSA. Data from
the Martini hospital Groningen, the Netherlands, show that the num-
ber of beds that could be used for isolation would be sufficient even
if the prevalence of MRSA would reach the same level as in the US
and the UK. However, in reality, the isolation capacity (especially for
ICU-patients) might be less due to financial and/or staffing problems
as there is an additional burden on HCW to treat patients in isolation
rooms. Therefore, in countries with a high endemic level of MRSA,
isolation capacity may be too small and we investigated the effect of a
limited amount of isolation beds in ICU’s on the efficacy of interven-
tions.

3.3.4 Results

For each scenario, we performed 1000 simulations for a time period of
30 or 60 years. The transmission of MRSA and the HCW in the hospital
are updated three times per day. All other model parts (intervention
measures, discharge, dead and admission of patients, decolonization
and transmission in the extramural population) are updated on a daily
basis.

An initial low MRSA-prevalence

We focus on three communities with three hospitals. Indeed, without
infection control measures, the epidemic curve ([Reacher et al., 2000])
as observed in the US and UK, results from our simulation (see Fig-
ure 3.7(b)). In a period of 10 years, the prevalence within the hospitals
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transmission parameter (see text)?
fraction of transmission within unit 0.95
population size per hospital 200,0001
size hospital 6931
(size core group per open population) 20,000
(size core group in hospital) 364
#ICU per hospital 51
# wards per hospital 36
# beds per ICU 9!
# beds per ward 18!
# HCW per ICU 9l
# HCW per ward 5!
(LOS in ICU) (days) 713
( LOS in ward) (days) 8L3
( LOS in isolation (days)) 203[Fitzpatrick et al., 2000]
recently admitted 0.0011*
in foreign hospital
extra infectivity superspreader 10 times higher?3
P(superspreader—colonized) 0.001%3
P(successful eradication) 0.25%[Fitzpatrick et al., 2000]
efficacy screening on admission 0.8813
frequency routine cultures 0.03%3

mean duration of colonization

1 year3[ScanViC et al., 2001]

endemic level in foreign hospitals

0.1[Reacher et al., 2000]

fraction of admissions directly

from other hospitals 0.05!3
ratio transmission rate ICU
vs transmission rate ward 32
fraction dead in hospital 0.0343
isolation capacity of an ICU 1 bed
max. number ICU’s closed 2

Table 3.2: Parameters used in the simulation model. With (LOS) we denote
the average length of stay and P stands for probability. Parameters with a *
are based on data from the UMCU and the Martini hospital Groningen (the
Netherlands). For parameters with a 2, no values in literature could be found
and these are chosen in such a way that without interventions, the prevalence
in the hospital and in the community as a function of time resembles the curve
as observed in the US and the UK [Reacher et al., 2000]. For parameters with
a 3, the value is independent of whether the patient belongs to the core group

or not.
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increases from almost zero to more than 15% of the hospital popula-
tion being colonized and the prevalence within the community at large
remains low (see Figure 3.7(a)). However, within the core group a sub-
stantial percentage of the population becomes a carrier, see Figure 3.8.
The fraction of colonized individuals in the extramural population is
much larger in the core group than in the non-core group.

In Figures 3.7 to 3.9 the results of different intervention strate-
gies are depicted. Applying the full Dutch ‘search and destroy” pol-
icy (screening on admission of high-risk patients, isolating carriers of
MRSA, screening of contact patients in case of an unexpected case of
MRSA and active decolonization of carriers) ensures that the level of
MRSA in the hospital remains below 5%. However, the colonization
level within hospitals is influenced by the policy of other hospitals. If
all hospitals use the ‘search and destroy” policy, levels within the com-
munity and the hospital will be extremely low (< 0.5%) with only spo-
radic outbreaks. With a single hospital using the ‘search and destroy’
policy, there will be MRSA carriers in the intervening hospital most
of the time with a prevalence in the order of 3%, which is still much
lower than the non-intervening hospitals. However, the effort to keep a
low prevalence is large. The influx of colonized patients will be higher.
Both the prevalence within the community of these neighbouring hos-
pitals is higher and patients directly transferred from neighbouring
hospitals have a higher probability of being colonized. hence. Hence
more outbreaks will occur which all have to be controlled.

As execution of the ‘search and destroy’ policy is costly [Vriens
et al., 2002], it is important to know which elements are vital. Now
we start from a situation in which all three hospitals take the same in-
tervention measures. When hospitals stop the screening of high-risk
patients on admission , the prevalence both in the community (Figure
3.9(c)) and in the hospital (Figure 3.9(d)) will remain very low and the
distinction with the full “search and destroy” policy (Figures 3.7(g) and
3.7(h)) is small. If all hospitals stop the policy of screening contact pa-
tients in case of an unexpected carrier of MRSA in the hospital, levels of
MRSA in the hospital and community will remain relatively low again,
but are substantially higher than with the full ‘search and destroy” pol-
icy due to more frequently occurring outbreaks of MRSA in the hospi-
tal. Discontinuation of active decolonization hardly effects colonization
levels (data not shown) as active decolonization is not very effective
anyway. The effects of transmission in the open population on the ef-
ficacy of the complete ‘search and destroy’ policy are shown in Figure
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Figure 3.7: An initial low prevalence. Left: the prevalence in the population.
Right the prevalence in the hospitals. The black lines indicate the average
behaviour of a hospital. The grey lines indicate the 90% confidence intervals.
We only plotted the situation for different hospitals. The lower lines always
correspond to hospitals that take intervention measures, the upper lines to a
hospital that does not take any intervention measures.
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Figure 3.8: The prevalence of carriership of MRSA in the core group popu-
lation as function of the time when no hospitals take interventions and the
initial prevalence is low. Left: the prevalence in the core population. Right the
prevalence in the hospitals. The black line indicates the mean behaviour of
any of the three hospitals. In 5% of the simulations, the prevalence was higher
than the red line and in 5% of the simulations, the prevalence was lower than
the green line.

3.10.

An initial high MRSA-prevalence

As a starting point for simulations in settings with an initial high preva-
lence, we used the prevalence level of a simulation after 1500 weeks
starting with an initial low prevalence and without an intervention
policy (see Figure 3.7(a) and 3.7(b)). With no interventions taken, the
prevalence continues to fluctuate around the starting values. If all hos-
pitals adopt the complete Dutch ‘search and destroy” policy and the
number of isolation beds would be sufficient, the prevalence, both in
the hospitals and in the community , will decrease to extremely low val-
ues in a period of around 10 years time (see Figure 3.11(a) and 3.11(b).
When there is only one isolation bed per ICU and wards are never
closed in case of an MRSA outbreak, prevalence will still decrease fast
(see Figure 3.11(c) and 3.11(d)). When patients known to be colonized
on a previous admission (or coming from a hospital in a country with
a high prevalence) are not screened on admission, the number of out-
breaks will increase. However, due to the active search in case a carrier
of MRSA is found in the hospital, outbreaks are unlikely to become
large and still the prevalence will decrease roughly in the same time
(see Figure 3.11(e) and 3.11(f)) as when all hospitals obeyed the full
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‘search and destroy” policy. However, although the final prevalence of
MRSA will be low, compared to the full ‘search and destroy” policy the
prevalence will be much higher as the number of small outbreaks will
be higher. On the contrary, when patients known to be colonized on
a previous admission are screened on admission but no active search
is performed in case a carrier of MRSA is found in the hospital, the
prevalence of MRSA will decrease but it will take considerably more
time before low prevalence levels are reached (see Figure 3.11(g) and
3.11(h)).

Similarly to the case with an initial low prevalence, we are inter-
ested what will happen if only a limited number of hospitals obey
a stringent policy, i.e., screening of contact patients and screening of
high-risk patients on admission combined with isolation of identified
carriers. Will these hospitals be able to bring down the prevalence
within their hospitals to low levels despite the constant influx of car-
riers of MRSA from neighbouring hospitals? Results of simulations
are shown in Figure 3.12). Non-intervening hospitals will hardly ben-
efit from the intervening hospitals while the intervening hospitals can
reach a relatively low prevalence of MRSA (< 5%) in the hospital.

3.4 Discussion

Both the simulation model and the analytical model confirm that apply-
ing the Dutch ‘search and destroy” policy is an effective way of main-
taining a low prevalence of MRSA in hospitals and in the community.
Either screening on admission of high-risk patients or screening of con-
tact patients in case of a carrier of MRSA in the hospital appears to be
sufficient to maintain the prevalence of MRSA at low levels. However,
using a single intervention measure is far more vulnerable to changes
in the dynamics, e.g., transmission in the open population, or possible
simplifying assumptions in the model. Screening of contact patients
appears to be more effective than screening of high-risk patients on ad-
mission. An intuitive explanation is that in case of a large outbreak
in the hospital, the probability that a colonized patient is detected is far
more likely than in case of a small outbreak. Therefore, screening on ad-
mission reduces the number of outbreaks while screening of contact pa-
tients stops transmission in the larger outbreaks. As active decoloniza-
tion is successful in only a limited amount of the cases (p=0.2), the effect
of active decolonization is only limited. However, the effect of a more
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successful eradication would also be moderate. Patients identified as
carrier will be recognized as such when re-admitted and screened. If
decontamination has failed, they will remain isolated on their next ad-
mission and cannot spread MRSA. Identification of a core-group can
be useful, as the prevalence within the extramural population is much
higher in the core group compared to the non-core group. Therefore,
screening of core group patients on admission, even if they are not
known to be colonized on a previous admission, may be an effective
infection prevention measure. An MRSA-clone that would also spread
in the open population will not lead to a dramatic change in the preva-
lence when the R-value for transmission in the open population alone,
remains below 0.5. The combined effect of spread in the open popula-
tion and the spread within hospitals still leads to low endemic levels.
For larger values, the prevalence in the extramural population will not
remain extremely low anymore even when the Dutch ‘search and de-
stroy” policy is used while for an Ry equal or larger than one, indepen-
dent of the measures taken by hospitals, the prevalence in hospitals and
in the community will reach high values. An R-value for transmission
in the open population of 0.5, corresponds to an expected outbreak size
of 2 in the population (1+1/2+1/4+1/8+1/16+...=2). This means that
the number of MRSA-carriers in the open population doubles and the
number of unidentified carriers would increase even more. As this has
no major impact on the prevalence in hospitals using the Dutch “search
and destroy’ policy, an increased number of patients seeking medical
help abroad is unlikely to have a major influence.
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Figure 3.9: Left: the prevalence in the population. Right the prevalence in the
hospitals. The initial prevalence in the hospital and the community is higher
than the extreme low endemic prevalence in Figure 3.7(h) and 3.7(g). Hence
we can determine the time scales to return to the extreme low prevalence val-
ues after a large outbreak has occurred. The blacks line indicate the average
behaviour of any of the three hospitals. The grey lines indicate the 90% confi-

dence intervals.
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Figure 3.10: Transmission in the open population. Left: the prevalence in the
population. Right the prevalence in the hospitals. The black line indicates the
average behaviour of a hospital. The grey lines indicate the 90% confidence
intervals. All hospitals obey the Dutch ‘search & destroy’ policy and the initial
prevalence in the hospital and the community is low. The figures show the
effect of different transmittability of MRSA in the open population.
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Figure 3.11: An initial high prevalence. Left: the prevalence in the population
as a function of the time in weeks. Right the prevalence in the hospitals as a
function of the time in weeks. The black line indicates the average behaviour

of any of the three hospitals. The grey lines indicate the 90% confidence inter-
vals.
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Figure 3.12: An initial high prevalence. Left: the prevalence in the population.
Right: the prevalence in the hospitals. The intervening hospitals follow the
Dutch ‘search & destroy’ policy but there is only 1 isolation bed per ICU and
no units will be closed. A black line indicates the average behaviour of any of
the three hospitals. The grey lines indicate the 90% confidence intervals. The
lower lines always correspond to hospitals that take intervention measures,
the upper lines to a hospital that does not take any intervention measures.
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Chapter 4

Independent patients

This work resulted from a brain storm session during which the obser-
vation was discussed that the probability for an event to happen to a
patient depends on the length of stay of the patient in the unit. There-
fore, even if acquisition of colonization with a certain microorganism
is harmless for a patient, the mean length of stay of patients who ac-
quired colonization will be longer than the mean length of stay of pa-
tients who did not acquire colonization. This can be shown by some
very simplistic deterministic formulas (moment estimators). The sim-
ple deterministic formulas, however, are not optimal and a maximum
likelihood procedure gives smaller asymptotic confidence intervals for
the parameters. Testing the methods on real data led to all kind of prob-
lems. Assumptions like a constant discharge and infection rate, i.e., in-
dependent of the duration of stay in the unit, are not always satisfied.
Moreover, taking into account the moments of detection of infection
or colonization, could lead to different predictions. Patients were also
assumed to be identical on admission, neglecting heterogeneity. The
problems observed in this Chapter led to the model described in Chap-
ter 5, in which no assumptions are made about the length of stay of
patients but the observed lengths of stay are used and the culture mo-
ments are explicitly taken into account.

4.1 Introduction

Critically ill patients in intensive care units (ICU) often suffer from in-
fections. In a one-day point-prevalence study including 10,038 patients
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in 1,417 ICU in 17 European countries, 45% of the patients were found
to suffer from one or more infections [Vincent et al., 1995], notably ven-
tilator associated pneumonia (VAP) and bacteremia 64.7% and 18% re-
spectively. For these two types of infections (as well as for others) one
finds that, on average, the patients that become infected have a longer
length of stay (LOS) in the ICU than patients that do not become in-
fected [Heyland et al., 1999]. It is tempting to interpret this correlation
as the infection causing an increased LOS. One should realize, however,
that the risk of getting infected increases with LOS. So it may also be
the other way around: a long LOS may have as an effect that one gets
infected. Finally, there might be heterogeneity among patients such
that some will, with higher probability, both stay longer and become
infected. In order to decide about the potential effect of prevention
measures one would like to disentangle how these various mechanisms
contribute to the observed correlation (note that all three mechanisms
may operate simultaneously).

Detailed case-control studies based on careful matching of patients
on the basis of a multitude of traits [Fagon et al.,, 1993; Rello et al.,
1996; Heyland et al., 1999; Timsit et al., 1996; Bonten et al., 1997; Schul-
gen, 1995] can lead to reliable conclusions. However, they are labour
intensive (and therefore costly) and consequently not performed rou-
tinely. The aim of the present note is to propose a test that uses only
standardly available data. The test ignores heterogeneity, so clinicians
should separately wonder whether or not heterogeneity may play a big
role. The outcome of the test provides us with a first rough estimate of
attributable extra stay and as such should guide our thinking about the
need for prevention measures and/or more costly statistical investiga-
tions.

We first analyzed data on intestinal colonization with Gram-negative
bacteria resistant to third generation cephalosporins, which is consid-
ered harmless and for which we suspected that it will not prolong
ICU-stay, and next for ICU-acquired bacteremia, for which we were
quite confident that it prolongs ICU-stay. Finally, we tested the hypoth-
esis that VAP prolongs ICU-stay.

4.2 Model assumptions and estimation

We adopt a Markov model for competing risks [Andersen et al., 1993]
concerning a population of patients in an ICU. The event ‘discharge’
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happens to all of them (so in case of "death” we also speak about "dis-
charge’; more about this in Appendix 4.6.3) and we know when. In
other words, for every patient the LOS is recorded (say as an integer
number of days). The event "infection” may or may not happen, but if it
happens, it happens before ‘discharge’. In our basic model, we do not
know when “infection” happens, but we assume that at the time of "dis-
charge’ it is known whether or not “infection” has happened. We label
a patient [ if infection occurred and U otherwise. So the data consist of
an integer (LOS) and a label (1 or U) for every patient.

The Markov model involves three unknown parameters, d, d’ and f.
Their interpretation is as follows. While being “uninfected” a patient has
probability per unit 1/d (=A) and f of being, respectively, discharged or
infected. And an ‘infected” patient has probability per unit of time 1/d’
(=) of being discharged. In other words, in the absence of a force of
infection (i.e., for f = 0) the sojourn times in the ICU is exponentially
distributed with mean d and infected patients have an exponentially
distributed remaining sojourn time with mean d’. Hence one can call
d' — d the attributable LOS. Our task is to estimate the parameters d, d’
and f from the data. The statistical sound way to do so is Maximum
Likelihood Estimation (MLE). In Appendix 4.6.1, we shall do exactly
this. In Appendix 4.6.2, we introduce a "deterministic’ simplification
leading to the explicit formulas for the estimators f*,d* and d*

= _ o (4.1)
LOS(U)
. LOS(U)
d* = 1P (4.2)
d* = TOS(I) — LOS(U) (4.3)
where by definition
Py = fraction of patients that leave the ICU infected
LOS(I) = theaverage LOS of patients labeled I
LOS(U) = theaverage LOS of patients labeled U

We emphasize that (4.1), (4.2) and (4.3) provide us with a recipe to cal-
culate an estimate for attributable LOS, using readily available data as
input and a (pocket) calculator as the only tool.

In Appendix 4.6.4 and 4.6.5 we substantiate that in replacing the far
more laborious MLE by (4.1), (4.2) and (4.3), one doesn’t make a big
error. Moreover, we show how to derive confidence intervals for the
various estimates, within the framework of the model (note that these
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intervals don’t tell anything about the reliability of the model itself; in
particular they cannot serve to justify the neglect of heterogeneity or
the assumption of constant discharge and infection rates).

Both the deterministic estimate and the MLE assume that the classi-
fication according to the categories I and U is perfect. When infection
does not lead to visible changes in the status of a patient, misclassi-
fication can occur when the infection status of patients who are not
known to be “infected” is not checked at discharge. Moreover, when
patients are cultured during their stay to determine the infection sta-
tus, additional information about the moment of infection is available
which can be used. The moments at which patients are cultured can be
taken into account in either a deterministic way (section 4.6.9) or in a
likelihood-based approach (section 4.6.10), although the deterministic
way loses its main advantage as no explicit formulas can be obtained.
The incorporation of possible misclassification, by taking the exact mo-
ments of culturing into account, can be important as it may lead to
major changes in the prediction for the attributable length of stay.

4.3 Data

The model was used for three different infectious complications: Col-
onization with Gram-negative bacteria resistant to third generation
cephalosporins, bacteremia and VAP. A cohort of 474 patients, consec-
utively admitted to two ICUs of the University Medical Center Utrecht
between August 2001 and May 2002 [Nijssen et al., 2002], was used
for colonization with Gram-negative bacteria resistant to third gen-
eration cephalosporins. During this period, on admission and every
Monday and Thursday, patients were routinely screened for intestinal
colonization with these bacteria by obtaining rectal cultures and us-
ing standard microbiological analyses. A finding of colonization with
Gram-negative bacteria resistant to third generation cephalosporins,
was not reported to the responsible physicians. For 17 of the 474 pa-
tients no culture results were available, typically patients with a short
length of stay, and these patients were excluded from analysis.

For bacteremia, a cohort of 974 patients, consecutively admitted to
the same two ICUs of the University Medical Center Utrecht between
January 2000 and May 2001, was used. Bacteremia was defined as
a blood culture growing with Gram-negative bacteria, Staphylococcus
aureus or yeasts. There was no protocol for obtaining microbiological
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surveillance blood cultures. All cultures were obtained for diagnostic
purposes on demand of responsible physicians. Fever or other signs of
infection usually are the incentive to obtain cultures for microbiological
diagnosis.

For the analyses regarding VAP, three different patient cohorts were
used. Two cohorts were from prospective randomized controlled stud-
ies on prevention of VAP [Bergmans et al., 2001; Fiore et al., 2000] (179
and 221 patients respectively) and the third cohort was similar to the
patient cohort used for bacteremia. In the two intervention studies
VAP was diagnosed according to a set of clinical criteria in combina-
tion with a positive quantitative culture of bronchoalveolar lavage fluid
(cutoff point > 10% cfu/ ml). In the non-experimental cohort VAP was
diagnosed according to clinical criteria only. To guarantee that VAP is
ventilator-associated, the clinical definition of VAP excludes episodes
of VAP within the first two days of ICU-stay. Therefore, all patients
who stayed at most two days in ICU or developed pneumonia during
the first two days were excluded. This requires some changes in the
parameter estimations (see Section 4.6.10).

In case of bacteremia or VAD, patients receive specific antimicrobial
treatment. Often, the data allow for a distinction of patients on the ba-
sis of more categories than just I and U. Since infectious complications
can increase mortality it may be important to distinguish in particular
between surviving and non-surviving patients see Section 4.6.3. How-
ever, in general a more detailed description will both reduce the num-
ber of patients in each category and increase the number of parameters
to be estimated, so the results will be statistically less reliable.

4.4 Results

4.4.1 Colonization with antibiotic resistant Gram-negative
bacteria

In all, 424 patients were included in the analysis, of whom 37 developed
colonization (33 patients where colonized on admission). The naive ap-
plication of the deterministic estimates (equations (4.1), (4.2) and (4.3))
and the application of the MLE-estimates 4.20, gives almost identical
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results. We find

d=65+03 d=135+22 f=0015+£0.002 d—-d=7.0+25
d=65+03 d=133+24 f=0015+0.002 d—-d=68+25
(4.4)
for the deterministic and the MLE-estimates respectively. We used Sec-
tion 4.6.4 to obtain the confidence intervals. A maximum likelihood
analysis, including the culture moments (see Section 4.6.10) and includ-
ing the 33 patients colonized on admission, leads to different estimates:

d=69+04 d=9.0+£08 f=0.030+£0004 d—d =2.0+0.9

(4.5)
(The inclusion of patients colonized on admission did not alter the es-
timates significantly.) Although acquisition of colonization with an-
tibiotic resistant Gram-negative bacteria still seems to prolong length
of stay, the estimated attributable length of stay due to colonization is
much smaller than in the naive approach neglecting the moments of
culturing.

Bacteremia

Of 974 patients included in the analysis for bacteremia, 67 had at least
one positive blood culture (7%). As bacteremia leads to clinical symp-
toms like fever, which are the incentive for clinical cultures, misclas-
sification will not be important. The basic method, not including the
culture moments, gives:

d=67+02 d=166+20 f=0.011+£0.0014 d—d =11.14+2.2
d=67+02 d=171+22 f=0.011+0.0014 d—d =10.5+2.2

(4.6)
for the deterministic and the MLE method respectively. Including
the information of the moment of detection of bacteremia (see Section
4.6.10), we find:

d=59+02 d=139+15 f=0.013+£0.002 d—d =80+15
4.7)
These methods indicate that d is significantly smaller than d’, which
confirms our hypothesis that bacteremia prolongs LOS. To test whether

bacteremia also increases the death rate, we distinguished between
death and discharge (see Section 4.6.3. We find:

dieath =29 +£2 4% =7340.3 d%h =71+20 d¥ =17+2
(4.8)
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colonization | no cult. neg. cult acq.col | posadm.
# | # | LOS | # | LOS | # | LOS | # | LOS
allpat. | 474 | 17 | 1.53 | 387 | 59 |37 | 195 |33 | 10.3

Table 4.1: Data for colonization with Gram-negative bacteria resistant to third
generation cephalosporins. Patients are divided according to the results of
the cultures, viz., patients for which no culture results was available, patients
with only negative cultures, patients for which the first culture was negative
but with at least one positive culture and patients for which the first culture
was positive. LOS stands for the average length of stay of the patient group.
# stands for the number of patients.

bacteremia | pos.cult. | neg. cult. |
# | # | LOS | # | LOS
all pat. | 974 | 67 | 229 | 907 | 6.2
surv | 810 |56 | 20.2 | 754 | 6.2
non-s. | 164 | 11 | 36.2 | 153 | 6.1

Table 4.2: Data for bacteremia. All patients with a positive blood culture for
Gram-negative bacteria, Staphylococcus aureus or yeasts were labeled as I. Pos-
itive blood cultures with other microorganisms or absence of positive cultures
were labeled as U. LOS stands for the average length of stay of the patient
group. # stands for the number of patients.

where d%" and d%* are the inverse of the respective rates. (The in-
fection rate remains f = 0.013 & 0.02.) The calculation of the mortality
rates suggests that bacteremia decreases per diem mortality. However,
overall mortality is independent of acquisition of bacteremia.

Ventilator-associated pneumonia

Incidence rates of VAP in the three studies were 48/179 (27%), 21/190
(11%) and 137/1090 (13%). (The denominator is the number of patients
with a length of stay of more than two days.) In all studies the mean
LOS of infected patients was considerably longer (ranging from 22 to
28 days) than the mean LOS of non-infected patients (ranging from 10
to 13 days).

For the first and second study, per patients data about length of
stay, whether or not the patient developed VAP and whether or not the
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patient died during hospitalization were available. For study 3, also
the day of acquisition of VAP was known. In the first study only pa-
tient who stayed more than 2 days in the ICU and were included. To
compare results, in the other two studies patients who stayed at most
2 days in ICU were excluded from analysis. Furthermore, to prevent
that a small number of patients with a long LOS (outliers) affect the re-
sults considerably, we restricted attention to those patients that stayed
at most 65 days in the ICU. (The exact value does not influence the re-
sults as long as the outlier with a length of stay of 281 is excluded from
analysis in study 2). We incorporated these restrictions on the LOS in
the deterministic model. In principle our analysis remains the same,
but the computations become more involved (see Section 4.6.8). These
do not yield explicit formulas for d and d’ and f, but they can be used
to compute these quantities numerically. A bootstrap analysis (1000
simulations) was used to determine confidence intervals. We obtained:

d=14.1(11.8;16.9)  d = 20.9(14.1;43.0)
d=12.4(10.5:145)  d = 8.6(2.5;18.3) (4.9)
d=781(7.18;8.52) d =14.18(9.88 : 19.89)

for study 1,2 and 3 respectively and the per diem probability to ac-
quire VAP was 0.010, 0.015 and 0.017 for study 1, 2 and 3 respectively.
The discharge rate for patients with VAP was higher than the discharge
rate of patients without VAP in 90.1%, 17.5% and 100% of the simula-
tions. When we distinguished between death and discharge (see Sec-
tion 4.6.3), the MLE for the discharge rates A and p for uninfected and
infected patients respectively are for study 1 and 2:

Adis = 0.057  Ageath = 0.023  pgis = 0.088  pigeatn = 0.027
Mis = 0.044  Ngearn = 0.025  pigis = 0.029  figeqrn = 0.019  (4.10)
)\dis =0.099 /\death =0.029 Mdis = 0.047 Mdeath = 0.023

(An analysis for study 3 based on a MLE using the moments of acquisi-
tion gave similar results.) d’ appeared to be considerably larger than d
in two studies. The per diem relative risk for developing VAP differed
for the three studies, probably due to a different patient population (see
Discussion). Calculation of the per diem mortality suggested that VAP
decreases per diem mortality. However, due to the longer stay, the over-
all ICU-mortality is higher for patients who acquired VAP.
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VAP No VAP \
study # # | LOS | # | LOS
all pat. | 179 | 48 | 28.31 | 131 | 12.95
1 surv 112 | 29 | 2953 | 83 | 14.52

non-s. | 67 19 | 26.00 | 48 | 10.23
allpat. | 190 | 21 | 21.86 | 169 | 10.6
2 surv. 136 | 16 | 22.63 | 120 | 14.70
non-s. | 54 5 (1940 | 49 | 11.67
all pat. | 1090 | 137 | 25.0 | 953 | 9.98
3 surv. | 474 | 43 | 25.23 | 431 | 10.59
non-s. | 150 | 21 | 1743|129 | 791

Table 4.3: VAP data for the three studies. Only patients with 3 < LOS < 65
were included. LOS stands for the average length of stay of the patient group
while # stands for the number of patients.

4.5 Discussion

In principle, the method described allows us to distinguish on straight-
forward mathematical grounds between cause and effect regarding de-
velopment of nosocomial infection on the one hand and LOS on the
other hand. However, the simple deterministic formulas (4.1), 4.2) and
(4.3) should be used with caution and serve primarily as a thought ex-
periment. The MLE-method, based on the same assumptions, lacks the
advantage of simple formulas and performs hardly better, see also Sec-
tion 4.6.4. Apart from that, there are problems to prove uniqueness of
the MLE estimates (see section 4.6.6 and 4.6.7). When information is
available about the moment of acquisition during the stay, this infor-
mation should be used. Specifically when misclassification can occur,
incorporating the moments at which cultures are performed is essen-
tial.

To test the performance on real data, we first considered two infec-
tions for which the outcome is predictable. In ICU-patients, intestinal
colonization with Gram negative bacteria resistant to third generation
cephalosporins is generally believed to be in itself harmless. Moreover,
presence or absence of colonization was not reported to physicians and
did not lead to changes in treatment. In contrast, bloodstream infec-
tions are generally believed to prolong the LOS.

The results of the analysis agreed quite well with these presump-
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tions and for VAP, for which no generally accepted view on its influ-
ence on LOS exists, our methods cannot solve this issue. Two of the
three studies suggest that development of VAP prolongs LOS with ap-
proximately 7 days. In the other study development of VAP seems to
shorten LOS although this result is not statistically significant (see be-
low for discussion).

We consider these rough analyses as a first proof of principle of the
applicability of the model, but further progress requires that we debate
the underlying assumptions and do not close our eyes for the possibil-
ity that they are at variance with reality.

First, we have used exponential distributions. This means that we
assume a constant discharge rate. This has the advantage that the pa-
rameters are few and have a clear medical interpretation (discharge
rates), but the data themselves do not perfectly reflect the exponential
distribution. Specifically, the number of patient with a short LOS and
the number of patients with a long LOS is too high to fit an exponen-
tial distribution well. (A y?-test used for testing whether the LOS of
uninfected patients followed an exponential distribution resulted in p-
values of 0.02 and 0.005 for colonization with Gram-negative bacteria
and bacteremia.)

Second, the distribution of the LOS of patients who died in the ICU
is not equal to that of those who did not, while the simplest version
of the model assumes they are. This might indicate that we should in-
troduce some heterogeneity in the population. These two points are
relatively easy to incorporate in the model, but at the expense of in-
troducing new parameters which often do not have such a clear medi-
cal interpretation. The problem of different LOS of survivors and non-
survivors can also be solved by introducing an extra state for patients.
All patients arrive in a state with relatively high mortality and have a
fixed probability per day to proceed to the second state.

Third, we have assumed a constant force of infection over time. This
means that the method can only be used for infections where transmis-
sion between patients is unimportant see Section 5 (i.e. the model does
not work in an outbreak setting, when the force of infection depends
on the number of infected patients).

Fourth, we assume a constant vulnerability for infection during
the stay. According to our data, this is a reasonable assumption for
colonization with Gram-negative bacteria resistant to third generation
cephalosporins and bacteremia (data not shown), but this may not
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apply for VAP. In our patients, the probability to develop VAP was
highest in the first week of ICU-stay (data not shown) which confirms
data reported by [Cook et al., 1998].

In addition to uncertainties concerning the mathematical approach,
there are potential imperfections in the data. We assume that directly
after acquisition, the colonization can be detected. In reality coloniza-
tion can only be detected with, an unknown, delay. In addition, all tests
used for microbiological analysis have a lowest detection limit. There-
fore some misclassification might have influenced our data. Moreover,
diagnosing VAP is extremely difficult and there is no clinical useful
gold standard for diagnosis. [Fagon et al., 1993]. In most ICUs VAP is
diagnosed upon a set of clinical, microbiological and radiological cri-
teria, which have a high sensitivity but a low specificity. These criteria
were used in study 3. Addition of invasive techniques (e.g. bron-
choscopy) with quantitative cultures of samples obtained increases
specificity, reducing the number of false positive cases of VAP. These
criteria were used in study 1 and 2. The different diagnostic criteria that
were used may have influenced our findings. Moreover, the incidence
rates are also influenced by patient selection. For example, diagnostic
criteria were identical for study 1 and 2, yet incidence rates were much
lower in study 2. In this study many patients admitted to ICU because
of head trauma were excluded. As these patients have an extremely
high risk for VAP, exclusion reduced the overall incidence (Table 4.3) of
infection.

Whenever the test indicates that the infection is the cause of a pro-
longed stay, one should still interpret the word ‘cause” with care, as
there may exist confounding factors that are the true cause. Yet the
possibility that the data are explained by the increased probability to
contract the infection when LOS is long, has been ruled out.

Despite these potential imperfections, the method has advantages
compared to a matched case-control study. The latter usually obtains
cases and controls from large databases, but due to matching crite-
ria relatively few patients are included in the final analysis. With the
present model, complete databases can be used and good statistical
power can be achieved. Moreover, no additional information is needed
(except development of infection, LOS and, maybe, whether the pa-
tient survived or not), making it suitable for many existing databases.
As the method is easy, fast and inexpensive, it provides an interesting
tool to investigate the relationship between cause and effect in this part
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of medicine.

4.6 Appendix

4,6.1 Maximum Likelihood Estimate

Suppose we look at a ward, and we are interested in a certain infection.
If the force of infection is constant, and the discharge rate only depends
on whether a patient is infected or not, we try to estimate the following
parameters:

e infection rate=f.
e discharge rate of a non-infected patient=X\.
e discharge rate of an infected patient=.

given that we know for each patient the length of stay (LOS) and
whether (s)he became infected or not. Let 7 denote the time elapsed
since a patient entered the ICU and let Gy;(7) denote the probability
that this patient is both still in the ICU and non-infected after time
7. According to the model, Gy (7) satisfies the following differential
equation:

ddT)gU( ) =—-(A+NGu(7) (4.11)

Hence we have:

Gu(r) = e OHIT. (4.12)
The density for the length of stay, given that a patient did not become
infected (fy(7)), is proportional to AGy (7). The constant of propor-
tionality serves to achieve the normalization [;° fy(7)dr = 1. Conse-

quently we have:
fu(r) = (A + fle" AT, (4.13)
Let G7(7) denote the probability that this patient is infected and still

in the ICU after time 7. G;(7) satisfies the following differential equa-

tion: J
=91(1) = fGu(r) = uGr(7)
dr 4.14
gr(0) =0. (14
The solution of this differential equation is given by:
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The density for the length of stay, given that a patient became infected
(fr(1)), is proportional to puGr(7). The constant of proportionality
serves to achieve the normalization [;° f;(7)dr = 1. Hence we have:

B (e —oap (AL [T —oant, —utr—t)
R G | Gy B u<41t6;lt

If we have N + M patients, of which M became infected, and we order
the patients such that the first IV did not become infected, the likelihood
becomes:

B N+ M FAM AN
L= < M ) (75) ()
Hj'vzl()\ + fle= N HfV:}LVJ‘il g(j;j; (e=nTi — 67(A+f)n)

(4.17)
and the log likelihood ! = log L can be written as:
N+ M
I = log< >+Mlogf+Nlog)\+Mlog,u
M oo (4.18)
N N+M —HT e (MNT
=2 A+ T + i log (e pwy )
To find the MLE-estimator, we solve the equations:
81 __ N N+M —(A T
ﬁl - N\ ,\+f m E] 1T + Z =N+1 efuTZ 67(A+7{)Ti
N M N+M N+M Te—+Ti -
=X " 2= Lt YN e oenr =0 (4.19)
oM _ M _ZN+MT+ZN+M Te HTi _ :
af" —  f f NAL =T _e~O+NT; —
9 M M N+M Tye #Ti -
@l = + Nf—p Zz‘:N—i—l m =0
This system of equations can be written as:
fN AM
N+M
FHE=lAT (4.20)
M + M ZN+M _ Tye+Ti
Py = 2Ui=N+1 g=aT; _o— DT,

4.6.2 Deterministic estimates

As the system of equations characterizing the MLE-estimates cannot be
solved analytically, we first investigate an estimate for which there is an
analytical expression. It turns out to be easier to work with the inverses
of the discharge rates:
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o d= %
[ ] d/ = 1
I
We introduce the following observable quantities:

M

P =
I M+N

4.21)

N .
LOS(U) = Z]:\;T (4.22)

o5 - Sien Ty
LOS(I) = =——F—— 4.2
0S(I) i (4.23)
and compare them with their expectation.

The expectations can easily be expressed in the parameters f, d and
d'. Let 7 denote the time elapsed since a patient entered the ICU and
let Gy (7) denote the probability that this patient is both still in the ICU
and non-infected after time 7. Then according to the assumptions:

Gu(r)=1- /OT fu(o)do = e~ (ath)T (4.24)

As the probability per unit of time that the patient becomes infected
(given that (s)he is still uninfected and in the ICU) equals fGy(7) and
E(Pr) equals the integral with respect to 7 we have:

f fd

E(Pr) = f/o Gu(r)dr = T =174 (4.25)
By definition
E(LOS(U)):/ 7 fu(T)dr (4.26)
0
Consequently
[T (L () gy — @
E(LOS(U))—/O T<d+f>€ (+)dr—1+fd (4.27)

To compute E (LOS(I)), we first observe that the expected duration of
the period in which the patient is not yet infected, given that (s)he is
infected before being discharged, is equal to £ (LOS(U)). The reason
is that the corresponding probability density function is proportional
to fGu and, therefore, equal to fi;. The second observation is that the
stay of a patient that leaves infected is naturally subdivided into two
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periods according to the moment of becoming infected. The second pe-
riod is exponentially distributed with parameter 1/d’, so with expected
duration d’. We conclude that:

E(LOS(I)) = E(LOS(U)) + d (4.28)

We now have three relations, (4.25), (4.27) and (4.28), between the ex-
pectation of the quantities (4.21,4.22,4.23) and the parameters f, d and
d'. These can easily be solved to obtain expressions for the parameters
in terms of the three expressions. If we replace the expectations by the
observed quantities, we obtain (4.1), (4.2) and (4.3) as estimates for the
parameters:

4.6.3 Distinction between "death” and "discharge’

If an infection leads to worsening of the clinical condition of a patient,
two effects for the average LOS of infected patients play a role. If the
patient survives, the infection may attribute to a longer LOS because it
takes the patient more time to recover, while if the patient dies (partly)
as a result of the infection, the infection may have shortened the LOS of
this patient. Therefore it remains difficult to interpret the attributable
LOS found. To solve this problem, one can introduce a death rate \;
and p2 and a discharge rate (without ‘death’) A\; and yx; for the unin-
fected and infected patients respectively. If we put A = A\; + Ay and
p = p11 + p2, we obtain again (4.20) and (4.1), 4.2) and (4.3) for the MLE
and the deterministic estimates respectively. If n of the /N uninfected
patients died in the ICU and m of the M infected patients, both (4.20)
and equations (4.1), (4.2) and (4.3) can be extended by the following
two equations:

mA = (M—m)s  nu = (N —n)z (4.29)

4.6.4 Asymptotic variance of the estimates

To obtain information about the accuracy of the estimate, we would like
to calculate the standard deviation in the estimates. For the determin-
istic estimates, it is straightforward to calculate the standard deviation
as the number of patients tends to infinity. For the MLE, we use the
Fisher-information matrix to obtain asymptotic confidence intervals.
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Asymptotic variance for deterministic estimates

We find the following asymptotic results:

o4 = dy/T+2fd—3—

d2+d’2+fdd’2 1

Odr+ = 7d Nios (4.30)
_ JHfd+(fd)? 1
O-fi* o f3d Niot

and for the difference d' — d, which is a measure for the attributable
length of stay, we find:

o (1+fd)(d?+d2+2fd3) 1
Ogege = \/ = Se (4.31)

To obtain confidence intervals for d*, d* and f*, we replace d, d’ and f
in the expressions for the standard deviation by their estimates d*, d"*
and f*.

The derivation of the asymptotic variance in the estimate for d is
shown below. The other asymptotic variances can be obtained in a sim-
ilar way.

. LOS(0) N+M
d—d* = d— 2220 =g — M ZJIT

(d—d)?= d?—2dN M 57 1T +(N+M) ST (4.32)
N+M
+2 (H*T)) AR IARL Y

The expected value of (d — d*)? is given by:

N 1
B(d = d) = fy oo T (G +

{d2—2dN]¢M > Ti+ (%

+f)Tz>

fe
N N

) Z 2+2<1\’+4M>2>lef;jTiTj}dTl
: ]:

(4.33)
Now evaluate the integrals separately for each of the four terms. Note

first of all that:

fOOO@ —( +£)T. idTy = 1
Joo %+ < FILTAT; = g (4.34)

2
Jo (G +f) GITLT2T) = 20
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Therefore, the fourth term can be written as
(1 2
S T (4 PG ) {2 (WRD2) SN SN 7y b ar =
2 (o] [oe) —(=
2 ((NM/[) ) NIV =1) [57 [ ((é + fle (‘11+fm) TTdThdT =
2

(M]—\i;:{,v)Q(N—l) (ﬁ)

(4.35)
and the first, second and third term give respectively:
o 2
oo —(i )
o 205 SN [ (3 + e ID Ty ) = 24NN L =
—2d> M+N
1+fd N
2 <N oo —(1+)T; M+N)? d \?
o (MN)TSN o (b4 f) e (O TRaTy = 200 (L)
Hence
$)2 _ 22 M+N | oM+N)? (4 \?
E(d_d>2_ d2_1+fd JJ\; +2 N3 <1+fd> + (4.36)

2 2

QNP (v 1) (1)
This is the expectation when N and M are given. Usually, in a clinical
trial, only the total number of patients included is known beforehand.
Therefore we average over all possibilities for N and M with appro-
priate weight. However, when everyone became infected, i.e., N = 0,
equation (4.22) is not defined and we have to determine E(d — d*)?
given that at least one patient did not acquire colonization. This leads
to the following expression:

Ntot Nt t 1 N fd Ntot_N 9 2d2 N J 2 N2 N2
& < N> <de> (de> &~ 1i7a fv”t+(m) (ﬁa’#ﬁ)

(4.37)
For large Ny, the binomial distribution can be approximated by a nor-
mal distribution. When we also rescale, i.e., x = %, we obtain for the

numerator (with p = ﬁ):

42 (1 - (%)Nﬁoj +

N, 2
1 Niot _,~ iy (@—p)? [ —24% 1 2 1 d2 1
S dx prm i L Tifde T 03 fa2 2% T 0HFd7 Ng; 2°

(4.38)
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For large Ny, the contribution to the integral is maximal when z ~
p. Therefore we make a Taylor-expansion of the terms ﬁ, with £ €
{1,2,3} around = = p. Note that we only have to take into account
even powers of the expansion because of the symmetry. Up to second
order we obtain:

Niot Niot 2
o Niot 1 dme*ﬁ (z—p)

d2<1(fd TN

1+fd) + 2rp(1-p) J 5, (4.39)
2 2 3
{~d2+ CEHD 4 (2(1+ fa)? + SEEHA) (@ - p)?)

For large N;,+ we obtain:

o fd N\ I 1
—d (1 +fd) + N (*(1+2fd)) + 0O <Nt0t> (4.40)

Therefore we have that for large N;,

E(d* —d)* = Nl (d*(1 +2fd)) (4.41)

tot

Asymptotic variance for the maximum likelihood estimates

It is less straightforward to calculate the variances for the estimates for
the MLE, as we have no explicit solutions for the MLE. Therefore we
use a variant of the Fisher Information Matrix. For notational conve-
nience we define §; = ), 0 = f and 63 = ;1. The asymptotic covariance
is given by:

CO’U(QZ', 03) = E((Gf — 91)(9; — 9])) ~ 1_1(91, 0o, 03)1-]- (4.42)

where the Fisher Information matrix / is given by:

0 0

This approach does not lead to explicit expressions for the variances,

but some approximations can be made.
If we define

M N+M Tge—(k—&-f-&-u)Ti

O+ f=w? Z.:%:H (e—HTi — e~ (VIIT)?

PO fo) = (4.44)



4.6 Appendix 115

we can write:

— o) pN fow) —p(\s fo 1)
[=-E p(\, £ 1) —B+ ( o) =p(N fop)
—p(\, £, 1) —p\fom) =g+ p(A o)

(4.45)
Let N, be the total number of patients, then E(M) = i~ + Ntot The sec-
ond part of p(\, f, 1) is more interesting. The patients N+1,..., N+ M
became infected during their stay, therefore we have that (using (4.16)):
T? —(A+f+u)T; M f 2~ (N +ftu)t

E ( : e , ) _ pA+Sf) fo dr e

6—;LTi7€—(A+f)Ti) AMf—u e—mt _e—(AHf)t

(4.46)

@ 2
orprtarm Jo L

This integral cannot be solved analytically, however the integral can be
approximated. Let ;£ =1+ ¢, then

o) 2 oo .2 1 1 3 5
/ — T —dr _/ ~ %74—14—5—54—%4—(9(67) (4.47)
0 0

eT — eXtFT eTl—eT € 2 6

The inverse of I is given by:

Ntotg thot+()\+f)(f(>‘+f) 2)E( )

AA+ ) Neot = A+ ) (2 +1*)E(p))  Af? (A+f) E(p)  AA+Hu’E(p)
AP+ 1) E(p) f()\+f)(thot A+HAf+E)E(p) = FO+1)* W E(p)
“AA+DPE()  —fO+ PEPE(p) A+ (Neor—(A+£)*E(p)) ais)
4.48

If we take the first three terms in the expansion of the integral into
account, the asymptotic variance in the estimates of A, f and . are given

by:

Var(\*) = 2 AN HOG2D 20— 204 N +4%)
- NtOf(A+f)%§<(§if>)fﬁﬁ§ff§gff§?+f)ffii?? 2449
* — _1 H Mo
Var(f') = xi DD EFOF =20 D+ (4.49)
Var(p*) = 1 A+ A+ + 1)
H Neot TN+ O P20 i)

Variance in the attributable LOS

The variance in the attributable LOS (d’ — d) can be determined with the
covariance matrix obtained in the previous section. We have that:

2 * * * *
E (((1 _ i) _(i _ 1)) ) _ Var(A") + Var(p") _QCOU(A LK)

Ao f At pt (Ap)?
(4.50)
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2
B (G- - G- 1)) = Bk + Bk - 28(k)
+(2-2)EE) +(3-)EE) +h -+
Now work out each of the terms separately:
BE(zz)= B <A121_A21_32>
A
- LE (1+A2;¥2+(A Lo - /\*)3)
ar 2(\_\*)2 *
— )\%_V & )+E<(>\+>\ ))\9 ) )—I-O()\—)\ )3
= )\2 + M + O()\ A*)
In a similar way we have that
1 1 3V *
4 3Var(p)

E = +O0(p—p*)?
(2 =1 i (=)

2
For the terms proportional to E(+) and E( - ) we find:
B(L) = E(i&) :lE(1—L+(A ) )+(’)(/\

Var) 1 o+ — )\)
Var( )+O( )3

1
3t
s

Finally, as

Cov(\*, 1) = B (" = N (" — ) = E (A1) — )
and thus E(\*u*) = Cov(\*, u*) + Au, we can write:

1 _ 1 1
E(x=)=F (MHW _M>
A

1 Cov(A*,u*

Q

(4.51)

(4.52)

(4.53)

-3

(4.54)

(4.55)

- e )3E<A<m—u>+u<A*—A>+<A*—A)(u*—u»?m

1 _ Cov(A",u")

1 Cov(\*

1 Cov(A*,u*) Var(p*) Var(\*)
bV (An)? TS T T

Combining the expressions above, gives expression (4.50).

T PV A eV (V(N* 1) 12 (N = A2 20 (e — ) (A =
= 3L = Lo L (NVar(u) + p#2Var(XY) + 22 uCov()

N)

1)

(4.56)

O

This last expression can be compared with ¢%. ,. from formula

(4.31)
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Figure 4.1: ratio between the Variance in the attributable LOS for the MLE and

the deterministic estimate. 0 < ’fi < 15,0 < % < 10

4.6.5 Numerical estimates of confidence intervals

As the MLE is asymptotically efficient, the variance in the estimates
should be smaller or equal to the variance in the "deterministic” esti-
mates. This is indeed the case. However, the ratio between the two
variances can be close to 1 for some parameter values. For the ratio
between the variances for the estimate of the attributable LOS, we find
the following results (see figure 4.6.5): When i > A + f, which corre-
sponds to the situation that the infection is beneficially for the patient,
the variance in th MLE-estimate is clearly smaller than the variance in
the deterministic estimate. However, when the infection is neutral or
harmful for the patient, the deterministic estimate does not do much
worse than the MLE.

It is also very interesting to know how well the asymptotic approx-
imations for the variances are if the number of patients is finite. To
investigate this, for given A, f and 1, we generated 10000 sets of Vy.¢
patients. We estimated the parameters back from the data in two ways,
with the deterministic estimate and with the MLE. The standard devia-
tions found in the estimate of the attributable LOS are shown in Figure
4.2. As can be seen from Figure 4.2, even for small number of patients,
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Figure 4.2: Variance in the attributable LOS for the MLE and the deterministic
estimate. The lines are the asymptotic approximations. The dots are the results
of the simulations. (a): d = 5,d =5, f = 0.1. (b): d =5,d =10, f =
0.1. (¢): d = 5,d = 2.5, f = 0.1. The variance in the MLE is smaller than
the variance in the deterministic estimates although the variances for both
methods are almost equal when d < d’. The the simulation results converge

to the asymptotic

lines as the number of patients increases.
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the asymptotic approximations are quite good. The variance in the at-
tributable LOS of the MLE is smaller than the deterministic estimate.
However, the difference is small when d’ > d. Therefore if the deter-
ministic estimate indicates that d’ > d, it is probably not necessary to
perform the MLE.

4.6.6 Existence and positivity of MLE-estimates

If we eliminate A and f from the equations (4.20) for the ML-estimates,
we obtain:

M(M + N) sy TyehT:
N+ oM N+M oy — Z —___Nan g (4.57)
p(N + -y ) SN o—HTi _ o Sioi Ti— gt
There are two interesting values for p: p11 = v and py = A2
Zj:l T} Zj:l T}

The left hand side (LHS) of (4.57) in 1o = p; is given by Z;V:JEM T;.
The right hand side of (4.57) is discontinuous in p = .

lim,,1,, RHS =0 limy,,, RHS = S MM T, (4.58)

For y1 — p2, both RHS and LHS have a pole. Therefore we expand them
in powers of (11 — p12).

M(M+N) _ _M®M+N) 1
p(N+2M—p 3 M Ty) 2M+N  (p—p2)
+ it oM Ty + O(( — pa2)?)
N+M
Tye i _  _MM+N) 1 . N+MT‘
i:%—‘rl e—HTi_g zfﬁ—ﬁ;#ﬂ 2M+N (u—p2) (2M+N)2 2
+ SR T+ O — p2)?)
(4.59)
Notice that:
RHS(2) = LHS (n2) = =gy 30 T +1 5 v T
— A (CLOS(U) + $LOS(1)
lim RHS(p)— LHS(p) =—-Y11,T;<0
[22%25%
(4.60)

If (~LOS(U)+1LOS(I)) > 0, there is a solution in the interval (i1, u2),
otherwise there is a solution on (p2,00) as the LHS converges from be-
low to 0, proportional to 7z when y1 — oo, while the RHS converges
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to 0 from below proportional to e » ANy #Tl. There cannot be a
solution for ;1 < p1, as the sign of LHS and RHS differs.

From the second equation of the system (4.20), we observe that the
estimate for f is positive when p > p;. With the first equation of the
system (4.20) we obtain that the estimate of ) is positive. This is an ad-
vantage of the MLE, as the deterministic estimate of i« can be negative.

4.6.7 Uniqueness of the MLE estimates

N+M
iter fes k) = tog (VM) 4 Alog (Fep) £ Nlog ()

+Mlog (14 €,) — Mlog (A + f+ 4 ex + €5 —€,)
N N+M

—S A+ ftreate)Tj+ 3 log(emWteTi — e=(frente)Ti)
j=1 i=N+1

N
=1\, f,u)—i—%q—i—%q—i—%eu—7)\+]‘f_u(e>\+ef—e“)—(e)\+6f) zle]
j:

N+M

(extep)e O NTi—cpe iy 9 N 2 M, 2
+ 2 L= Sm— o T2 TN T g
i=N+1
N+M )
M T; 2 3
+ | 552 — L exter—e,) +0(e
_ M_2 N_2 M._2 M 2
_l()‘afnu')_ 2f2€f Tz T g z6u =+ 2()\+f_u)2(6)\+€f_€,u>
N+M 7 ) .
- : z(ex+er —€,)° +O(€)

=Nl 2<e%(>\+f7u)Ti_6*%(>\+f7u)Ti>

(4.61)
In this derivation we used the system of equations (4.20) to show that
all terms proportional to €y, €y and ¢, cancel out. If for small €y, ey and
€., the remaining expression is smaller than [(]\, f, 1), both evaluated
in the MLE, each critical points of the likelihood would be a maximum,
which would imply uniqueness. However, this could not be proven for
arbitrary lengths of stay. However, in all numerical examples, only one
extremum could be found.

4.6.8 Restrictionon LOS

Another point is the following: In reality, it is usually hard to deter-
mine whether an infection is ICU-acquired or not. To exclude non-ICU
acquired infections, ICU-acquired infections are usually defined as in-
fections diagnosed after a fixed number of days after entering the ICU.
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Furthermore, to prevent that a small number of patients with a long
LOS (outliers) affect the results considerably, one often restricts the at-
tention to those patients who stay at most a fixed number of days in the
ICU. As a second extension, we incorporate these restrictions on the
LOS in the model. In principle our analysis remains the same, but the
computations become more involved.

We use the basic model of section 4.2 but we now only look at pa-
tients who stay at least o and at most 3 days in ICU. This gives the
following relations. These do not yield explicit formulas for d and d’
and f, but they can be used to compute these quantities numerically.

vl f-a TGN1(T)dT
LOS(NI) = Jo TON1{T)dT
OS(NI) a+ R
J2 dr |7 durfGnr(a)de” a7
ff dr [T da:ngI(x)%e_%(T_x)
P; = f fC?iTgNI(T) foﬁ_cffcie_?/
(é ff Gni(T)dT +

fff drGni(T) foﬁ_‘r dm%e_ﬁ)

LOS(I) =
(4.62)

4.6.9 When screening is done at fixed time intervals

Assume patients are screened for a microorganism on admission and
at fixed days of the week, say after alternatingly w; and wy days. In
this setting there is an extra possibility of misclassification. Patients
who become colonized, but are discharged before the next screening,
will never have a positive test. To correct for this phenomenon, we do
the following: Define m as the time at which the first culture is per-
formed after admission. We assume for the moment that cultures are
performed at times 0, m, m + wq, m + wy + wa, m + 2wy + wy, .... We
now label the cultures such that screening 0 is performed att = ¢y = 0,
screening 1 at ¢ = ¢; = m and so on. Again we only look at patients
with a length of stay in the interval («, 5). As we know whether a
patient was colonized on admission, we could take o« = 0. However,
usually an infection is classified ICU-acquired only if detection takes
place after a fixed number of days. We now define n,;,(m) as the low-
est culture number n, such that ¢, € (a, 3). nn.n(m) is defined as the
largest culture number such that ¢,, € («, ).

Next, we calculate the fraction Gy p of the individuals who are col-
onized, but not yet tested positive as a function of time ¢ elapsed since
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admission and given the value of m. Directly after a test, this fraction
will be zero. Therefore Gy p will obey the following differential equa-
tion:

el — Gy (t) = FGp (1) (4.63)
gND( n) =0
with n > 0. The solution of this differential equation is:
fdd (A=)t g=bt _ o~ (A1)
T far—a (¢ ET e =) e

Directly after a screening, Gnyp will drop to zero, while G; increases
with the same amount. With Gy p((,)-) we denote this amount, which
is mathematically defined as lim1;, Gnp(t).

Now we are able to calculate P;, LOS(NI) and LOS(I) as a func-
tion of m. (Gn is the same as in 4.6.2.)

nmax(m)

P = g tn M1 — _ﬁ(ﬁ_tn)
1(1m) n:n%i(m) nD((tn)-)(1 —e )/ (465)

(é ff Gni(T)dT + ffaﬂ drGn1(T) Oﬁi‘r dx%e_§>

B
LOS(NI)(m) =2 [drrGni(7)

nmax(m) 1tn+l
+3 Y [ drrGnp(7)

n= nmm (m) tn

+ f drriGni(r f doge” (4.66)
tnmax(m)
« t Tmin (M) T—7
+ [ drrfGni(r) [ duke T
t a

Nmin (M) —1

tnmin('m) t"min(m)

+ [ drrfGni(r) [ se @

Los(mm =43 Oxnl(t)) [ H @)

where we omitted the normalization for LOS(NI)(m)and LOS(I)(m),
which is obtained by dividing by the same expressions without the 7 in
the integral.

Until now we assumed that cultures were performed at ¢t = 0, m,
m + wy, m + wy + wy, ... with m in the interval (0, w2). However, if



4.6 Appendix 123

w1 # wo, it is also possible that cultures are performed at ¢ = 0, m,
m + wa, m + wy + wa, ... where m is now in the interval (0, w;). If we
assume that m is uniformly distributed, we obtain our final formulas:

LOS(NI) = —1

w1t+wsa

<f0w2 LOS(NT)(m, w1, wa)dm + [;"* LOS(NT)(m, wo, wl)dm)
W(NI) = wlin

< o LOS(I)(m, w1, wg)dm + [;"* LOS(I)(m,wg,wl)dm)
pr=-1 ( 8”2 Pr(m,wy,wy)dm + fgﬂl PI(m,wg,wl)dm>

wi+wsz

(4.68)

4.6.10 MLE including moments of culturing

For each patient, we divide the period of stay into at most three peri-
ods: the period in which the patient is certainly uninfected, a period
in which the patient is colonized (period after a positive culture) and
the period between the last negative culture preceding the first positive
culture and the moment of the positive culture itself.

If the patient is colonized on admission, the likelihood is given by
pe Mt (4.69)

If the patient never had a positive culture, the length of stay of the pa-
tient 7' can be written as T' = T, + T;, with T}, the period that the patient
is certainly uninfected and 7j, is the period after the last culture dur-
ing which the infection status is not known for sure. In this case the
likelihood is given by:

Tq
e*()\+f)Tu )\67(/\+f)Tq _|_ f dtfef()‘+f)tluefu(Tq7t) e
0 (4.70)
e~ OFNTu (Ne=OHNTy o i (e=nTy _ e*(AJrf)Tq))

Finally, when a patient was not "infected” on admission but became in-
fected during the stay, the the length of stay of the patient 7" can be
written as T' = T, + T}, + T, with T}, the period that the patient is cer-
tainly uninfected, 7. the period after the first positive culture and T},
the period for which the “infection” status is not known for sure. In this
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case the likelihood is given by:

Tq
—F)Tu |, p—1Te —(AFAE ,—pu(Ty—t) _
e pe [ dife e Hlq @71)

0
e_()\+f)T71. Me_#Tc )\—f—:;—u (e_#Tq — e_()“"‘f)TQ)

The total likelihood is the product of all individual likelihoods.

Suppose patients who stayed at most o days in the ICU were ex-
cluded as well as patients who developed “infection” within the first «
days of stay. The likelihood that a patient did not acquire “infection’
and is till in the ICU after a days is e+, For the patients remain-
ing in analysis, the likelihoods in equations (4.71) and (4.70) should be
multiplied by e +f)e.



Chapter 5

Dependency between
patients

5.1 Introduction

Within health-care settings, antibiotic resistance increasingly ham-
pers successful treatment of infections, especially in intensive care
units (ICUs) [Kollef and Fraser, 2001]. For some pathogens (e.g.,
vancomycin-resistant Staphylococcus aureus and pan-resistant Pseu-
domonas aeruginosa and Acinetobacter species) the post-antibiotic era
is approaching. With a limited armamentarium of antibiotics remain-
ing available for treatment, infection prevention becomes more and
more important. The epidemiology of antibiotic resistance in hospital
settings, however, is complex and quantitative understanding of the
dynamics is essential for designing optimal infection control strategies.

As only a fraction of colonized patients will develop clinically
apparent infections [Bonten and Weinstein, 1996], the true volume
of antibiotic resistance is best represented by asymptomatic carriage
(i.e., colonization). Changes in the prevalence of colonization with
antibiotic-resistant microorganisms within hospital settings may occur
through different processes: admission and discharge of colonized and
non-colonized patients; mutations, changing susceptible bacteria into
resistant ones, followed by selection due to antibiotic pressure; and
cross-transmission, usually via temporarily contaminated hands of
health care workers [Bonten et al., 2001]. A key characteristic of cross-
transmission is dependency among patients. The risk of acquisition
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(also called ‘colonization pressure’) is influenced by the colonization
status of other patients [Bonten et al., 1998]; also see [Merrer et al.,
2000] for MRSA, [Puzniak et al., 2002] for VRE and [Man et al., 2001]
for Enterobacteriaceae.

Because of the typically small patient populations in ICUs (usually
<20) and the rapid patient turnover, large fluctuations in proportions
of colonized patients in time occur naturally [Bonten et al., 2001]. In
relatively short time series, with large fluctuations in numbers of colo-
nized patients, the dependency created by cross transmission leads to
overdispersion and autocorrelation [Cooper and Lipsitch, 2004]. This
means that in periods of high prevalence the likelihood that coloniza-
tion resulted from cross-transmission is higher than in periods of low
prevalence. So, the variation in time in the average number of patients
colonized each day will be skewed.

Processes in which patients interact are usually called ‘non-linear’.
In contrast, mutations, selection of resistant flora and admission of col-
onized patients occur independently of the colonization status of other
patients. For these processes there is no autocorrelation and when an-
alyzed in time, the numbers of patients colonized each day will be bi-
nomially distributed. In the following we call such processes ‘linear’,
to distinguish them from the non-linear cross-transmission. This dis-
tinction between linear and non-linear processes has implications for
the design of infection control strategies, as well as for the interpreta-
tion of the observed effects of interventions [Cooper and Lipsitch, 2004;
Harris et al., 2004]. Barrier precautions, for instance, can only prevent
cross-transmission. And with regard to interpretation, generally used
statistical tests assume independence of data, which is violated when
patient-to-patient transmission is involved.

Two previous studies attempted to derive estimates of the relative
importance of both processes underlying the dynamics of antibiotic re-
sistance. [Pelupessy et al., 2002] proposed a Markov chain model to
analyze transmission dynamics in small hospital settings [Pelupessy
et al., 2002]. The model used data on the number of admitted patients,
number of patients colonized per day, and the duration of length of
stay. The daily changes in the numbers of patients that were colonized
were used to estimate the rates of linear and non-linear processes and to
estimate relative contributions of cross-transmission and endogenous
acquisition. Limitations of this model included

e that two linear processes (i.e., admission and endogenous selec-
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tion rates) could not be distinguished
e the assumption of a constant and complete bed occupancy

e a presumed constant discharge rate (or, in other words, sojourn
times are exponentially distributed)

e uncertainty of patient status in-between culture sampling mo-
ments.

More recently Cooper and Lipsitch, building on the work of [Pelupessy
et al., 2002] proposed a ‘hidden Markov model’, in which they used
infection data, instead of longitudinal colonization data, to determine
the relative contributions of linear and non-linear processes of acquisi-
tion [Cooper and Lipsitch, 2004]. Using three data sets, they concluded
that patient-to-patient transmission was relevant for VRE and MRSA,
but not for Gram-negative bacteria. Even though the conclusions were
not validated by way of reference data, they elegantly demonstrated
that their model offers marked improvement over generally used ap-
proaches when patient-to-patient transmission is relevant. However, as
infection rates only represent the tip of the iceberg, uncertainty about
underlying transmission processes remains and long surveillance peri-
ods would be needed to derive reliable predictions in settings with low
infection incidence.

In the present study, we first present an extension of the Markov
model proposed by [Pelupessy et al., 2002] for the interpretation of lon-
gitudinal colonization data. The adaptations are

e that admission rates are explicitly distinguished from endoge-
nous selection rates

e that actual changes in bed occupancy are used

e the use of a stochastic model to estimate the status of patients in-
between culture sampling moments.

So the model formulation is data driven from the very beginning and
incorporates all the information that is available. The model is first
used to interpret the epidemiology of cephalosporin-resistant Enter-
obacteriaceae (CRE) in two ICUs, using extensive surveillance and geno-
typing as reference. Next an extended version of the model, with one
extra infection route and additional patient characteristics, is used for
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studying the epidemiology of Staphylococcus aureus in a burn wound
centre. Finally we use the framework to determine optimal culture fre-
quencies.

5.2 The model

We need a mechanistic model that incorporates the different infection
routes and that, preferably, requires the specification of only few pa-
rameters. Based on this mechanistic model, we will perform the pro-
cessing of the available data, leading to estimates of the parameters in
the mechanistic model and thus to estimates for the relative importance
of the infection routes.

For the moment we assume for the mechanistic model that:

e patients can be in two states: either a patient carries the infective
agent of interest or a patient is uncolonized, i.e., does not carry
the infective agent at a detectable level

e uncolonized patients can acquire the agent and thus become col-
onized

e colonized patients can transmit the infective agent to uncolonized
patients

e when we know the colonization status of all patients at a certain
time, we know the transition rates. (This is the so-called Markov

property.)

e once a patient becomes colonized, he/she remains colonized dur-
ing the rest of the stay. In this way we know that, as long as there
is no change in the population, the prevalence can only increase.

e the colonization status of a patient is determined on admission
Suppose we know for each patient:

e day of admission

e day of discharge

e days at which a sample is taken (which is cultured)
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e results of cultures (assumed, for the time being, to be 100 % reli-
able)

and, possibly, we also know individual characteristics of the patients,
like

e susceptibility per patient (e.g., proportional to the burned body
surface)

e infectivity per patient (e.g., proportional to quantity of bacteria
found in cultures)

We divide the period of stay of a patient retrospectively into (at
most) 3 periods based on the results of the culturing;:

- - - + +

l l l l

time
tO tl tQ te

1. patient is certainly uncolonized [to, ¢1]
2. patient may or may not be colonized [t1, t2]

3. patient is certainly colonized [to, t]

Per day, we have three categories of patients, uncolonized patients, pa-
tients whose colonization status is uncertain and colonized patients.
We label these three categories U/, Q (for ‘questionable”) and C respec-
tively. The number of patients in the categories are represented by re-
spectively, u, ¢ and c . For later convenience, for every time ¢, we order
the patients in category Q in increasing order of the time they are al-
ready in category Q, i.e., a patient entering category @) will be the first
one in the ordering.

5.3 Data processing

The up-dating (on a day by day basis) consists of 4 parts:

1. Evolution according to the mechanistic model
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2. Use results of culturing
3. Removal of the patients that leave state O
4. Incorporate the new patients in Q

We assume that culturing, discharge and admission take place at the
same fixed time of the day. In the bookkeeping, we only incorporate
those population states that are compatible with the data.

By definition of the categories, we are certain about the colonization
status of the patients in &/ and C. For each day, the number of patients in
these two categories can be determined from the data directly. Hence, u
and c are treated as (time-dependent) parameters and are not included
in our definition of the state space. As each of the patients in Q can
be colonized or not, the remaining state space is (Z3)? = {0,1}9. Each
state is denoted by a vector v = (v1,v2, ..., vy), with v, € {0, 1}, where
vy, denotes whether the k™ patient in Q is colonized or not. The state
(v1,v2,...,74) can also be represented by the binary number v vs . . . v,
and therefore we have a natural labeling j of each of the 29 states (0 <
j <20 -1).

For notational convenience, we would like to switch between a state
represented as a finite sequence of 0’s and 1’s, i.e., as an element of
(Z2)1, and its corresponding number. Therefore we introduce the num-
bering function defined as:

N : (Zg)q — Zoq C N

(v1,v2,...,7q) — Zgzl ;2@ (5.1)

The inverse of the numbering function, N —1 relates a state number m
(0 < m < 27 — 1) to the colonization status of the individuals in Q.
Specifically, the element N ~!(m); denotes whether individual k¥ (1 <
k < gq) in state m is colonized or not. We also introduce a notion of
ordering on (Z3)4.

vo>vey >y Vo 1<i<g (5.2)
and a L'-norm: ,
|’U| = Z’U,L' (5.3)
i—1

As the state is actually uncertain, we want to employ a stochastic
description and assign to each state a probability that it is the ac-
tual (unknown) state. So we introduce the probability vector p =
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{po,p1,...,p2a—1} of length 27 in which p; denotes the likelihood that
the system is in state j.

For the description of the time evolution of the vector p, we need the
mechanistic model. The mechanistic model should give probabilities
Apn, (0 < m,n < 29 — 1), which describe how likely state m is at
time ¢ + 1 just before culturing, discharge and admission, given that
the system was in state n at time ¢ just after the culturing, discharge
and admission. The evolution can then be defined in terms of matrix
multiplication:

E: R¥ 5 R

pio Ap  with A = (Ay) (54)

Note that the matrix A has a special structure when no additional
individual characteristics play a role. Let 7(k) be the probability that
an uncolonized patient acquires colonization during a day, given that
there are k colonized patients in the ward. Each transition rate in col-
umn m is either zero, when the transition to state m is not allowed by
the mechanistic model, or it can be written as a product of powers of
m(c+j)and (1 — w(c+ j)) with ¢ the number of colonized patients in C
and j the number of patients in Q that are colonized when the system
is in state n. Explicitly,

Apn =0 if N~Y(m) # N~1(n)

Amn = (1 —m(k ))“ (k) (1 = m(k)" if N~'(m) > N~(n)

with [ = [N~ (m)| — |[N~(n)| and k = ¢+ |[N~1(n)|
(5.5)

For instance, in the case that there are 2, ¢ and u patients in Q, C and U/
respectively, the matrix A becomes:

—m(et1))t

0 0
1—m(c+1))HHe 0 0

(1 0
1—7(c+1))*nm(c+1) (Q—m(c+1))*m(c+1) (

(1=m(c)) 0
(1=m(c)) "m(c) (
(1=m(c)) n(c) 0
(1=m(c)) ( 1—m(c+2))"

Note that the matrix A does not preserve the norm of the vector p
when u # 0. (This is due to the fact that we leave out all transitions that
could in principle have happened to the U category.)

We now will use the culture results, the discharge data and the ad-
mission data. Suppose that the k" patient in Q is cultured. By the def-
inition of the category Q, this culture will be positive. Therefore only
the states m, 0 < m < 29 — 1, with N=!(m); = 1 are allowed by the
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data and the other states have zero a posteriori likelihood. Mathemati-
cally, culturing of patient k£ in Q amounts to projecting the vector p on
a linear subspace isomorphic to R?"".

C: R* - R¥
p— Cp withC = (Cpp) (56)
and the diagonal matrix C is given by:
0 ifn#morNl(n),=0
Cimn = { 1 ifn=mand N~'(n)y =1 (5.7)

Example: In the case that ¢ = 3 and we culture the second patient in
Q and before the culturing the state vector is p = (po, p1, - .., p7), then
after the culturing, the vector will be (0, 0, p2, p3, 0,0, p6, p7).

When a category Q patient ‘leaves” Q, either because he/she was
cultured or because he/she leaves the unit without being cultured, the
number of possible states is reduced by a factor 2.

For 1 < k < ¢ we can define the operator O, that removes the kth
patient in @) via:
O: R L R¥!

, (5.8)
P—P

where the components of p’ are defined by:

/ _
pN(’UL...,’Uq_l) - pN('Ul7---7'Uk—17077)k7---vq71) +pN('Ul---aUk—l717'Uk7---'Uq71) (5'9)

This operator Oy, just adds the probabilities of the states for which the
colonization status of the remaining patients is identical.

If several category Q patients ‘leave” Q at the same time, we either
have to generalize the operator O, or we have to apply the operator Oy,
several times for different k (and different ¢). In the last case, to avoid
confusion about which of the patients in Q ‘leaves” Q, we should order
the operators such that we do the removal in decreasing order of the
patient number in Q.

Suppose now that [ patients enter category Q at a certain time ¢. By
the definition of the category Q, patients enter category Q directly after
their last negative culture, so we know that these patients enter cate-
gory Q uncolonized. As we ordered the patients in category Q accord-
ing to the day they entered this category, these [ patients correspond to
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the first [ digits in the binary expansion. Due to this ordering, the func-
tion I; that deals with the admission of [ new patients to Q is defined
by:

L: RY - R¥"

, (5.10)
P—DPp

where the elements in the vector p’ are given by (0 < k < 20+l _ 1):

i q
, { 0 ifk>2 (5.11)

Pe = pp ifk <29

Note that Oy, and I; involve a change of the dimension of the state space.
Indeed, we "glue’ together state spaces of different size according to the
need as exposed by observed events.

The likelihood of the observed events during 1 day is the norm of
the final state vector p (assuming that the initial state vector had norm
1). More precise, the likelihood is given by

|C Ap
p|

(5.12)

The likelihood of the observed events over several days is the product
of the relevant 1 day likelihoods.

5.4 Estimating parameters and confidence intervals

In this section we will describe the statistical methods used in the anal-
ysis of section 5.5. The value of the parameter that maximizes the like-
lihood of the totality of the observed events is called the Maximum
Likelihood Estimator (MLE) and is denoted with 6. To find confidence
bounds for MLE, we use the likelihood ratio test. This test is based on

the likelihood ratio:
ie) (5.13)
L(0)

Note that § and L are functions of the data. Suppose a ‘true’ value for ¢
exists. This value is denoted by 6. The function

[:OQ—-1R

1(6) = —2log %

(5.14)
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converges in distribution to the x2-distribution with k degrees of free-
dom, with £ the dimension of the parameter 6, see e.g., [Cox and Hink-
ley, 1979]. Therefore:

P (90 c {eﬁ(e) < xi;k}) —a (5.15)

when the amount of data increases (see for instance [Andersen et al.,
1993]) where Xi; ;. is the size 1 — « critical value of the chi-square distri-
bution with k degrees of freedom. The volume

{017 < X2} (5.16)

is an a-confidence region which is asymptotically correct. Intuitively,
this is a good approximation when the data show that all states have
been visited several times. To find confidence intervals for a component
of the parameter, we treat the other components as nuisance parame-
ters, see [Venzon and Moolgavkar, 1988]. Let ;(z) = {0 € Q|¢; = «}.
The profile likelihood for 6;,1 < i <k, is given by

Li(6;) = L(# 17
(6:) gl (0) (5.17)

and the approximate a-confidence interval for the i" component is
given by:
{6i12(log L(0) — log Li(6;)) < X2} (5.18)

The profile likelihood method can also be used to construct confidence
regions for a function ¢ : 2 — R. The probability

7 2
P (oo € {ol min70) <2 }) (5.19)

converges to a when the amount of data increases and so

x| min (0 < i} 5.20
{ oty () = X 520

is an asymptotically correct a-confidence region for the function g. To
obtain a one-sided confidence region, we first construct a (—1+2cq) two-
sided confidence region, which will be, as a rule, an interval I = (i, i1).
The function

g(x) = min (0 5.21
g {019(0)=x} (©) ( )
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1(0)

min
{01g(0)=x}

(é) + X%;o,gs L

(é) + X%;o.e}o ———————

Jo o g(é) i J1 —x

Figure 5.1: Construction of one-sided 95% confidence intervals for a function
g using the profile likelihood method (see equation 5.21) The intervals (4o, 1)
and (jo, j1) are respectively 90% and 95% confidence intervals. The intervals
(—00,41) and (ig, 00) are one-sided 95% confidence intervals.

will become symmetrical around ¢(fy) when the amount of data in-
creases. Therefore, (—o0,i1) and (ip, o) are one-sided a-confidence in-
tervals for the function g (see Figure 5.1).

For a few calculation we also used a different, more Bayesian
heuristic method, to construct confidence intervals. (This method is
only used when stated explicitly, otherwise the previous method is
used.) Let f(z) be the density function of the y?-distribution with k
free parameters. We assume that f(I(6)) is the distribution for the pa-
rameter 0, i.e., the probability that 6 € w (given that the model is correct
and that the x2-distribution is a good approximation) is given by:

7(I(6)) 522
vEL(I1(0(9))

where the k-dimensional volume of a set § is denoted by Vk(¢) and
I~ is the set-valued map assigning to a number the set of all points
in ) that are mapped to this number by [. (The following intuitive
f(U0))
VE=1(I=1(1(0)))

P(HEw):/wdH

reasoning shows that is the correct density. For each
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interval I = (ig,i;) C R*, we have by definition that P(I"*(I)) =
F(iy) — F(ip) = f;)l f(t)dt with F the cumulative distribution func-
tion of the x*-distribution with & degrees of freedom. Suppose ()
is the density we are looking for. Then we also have that P(I~YI)) =
Jo dog(0)1; = Jo dt Ji- 1( dk 19(z f dt [;- 1( dk: 19(x).
When we compare the two expressmns, we notlce that ft)= i t) Je—1 g(z).

g(x) = % is a solution of this equation.)

For a general function g : 2 — R, the expected value of g is given
by:

F(1(0))g(0)
= db 5.23
=9 /Q vt (i) o2

We call an interval I = (y, z) an a-confidence interval for the function
g, if P({0|g(8) € I}) > a. The choice of the interval depends on the
problem, for instance one can choose for 1-sided or 2-sided tails.

None of the integrals in this section can be evaluated exactly, as
the likelihood function defined in Section 5.2 is a complicated function.
However, as long as the number of parameters remains small and the
calculation of the likelihood is relatively fast, we can evaluate the inte-
grals numerically with a Monte Carlo approach. Assume 2 is bounded
(otherwise restrict the domain to the physically relevant domain). Ran-
domly pick 6*,6%,...,0N € Q and calculate I(°) (1 < i < N). Let I;
(1 < j < M) be the interval (x2_, Iy X% ,) with M € N (By construc-

M M>

tion, the probability P({0)l(0) € I;}) = 1/M Vj.) We define N; as
{6%]1(") € I;}. Now we can approximate the probability (5.22) that
0 € wby

M
Z iw (5.24)

where #5S is the cardinality of the set .S and (5.23) can be approximated

by

N .
q(0)
2V (5.25)
— M#Nj)

where j(i) is the number j of the set V; to which i belongs.

The mean prevalence in a unit is defined as the quotient of the num-
ber of patient days for which patients are colonized divided by the to-
tal number of patient days. In case the exact days of acquisitions are
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known, the prevalence can easily be calculated. When there is uncer-
tainty in the days of acquisitions due to the fact that patients are not
cultured on a daily basis, the expected prevalence can be calculated by
calculating the prevalence for all of the realizations that are allowed by
the culture data and afterwards averaging over these prevalences with
appropriate weight (which will depend on the parameters in the mech-
anistic model). However, typically, the number of realizations of the ac-
quisition days will be extremely large which makes an exact calculation
impossible. Therefore we will use an approximation which is reason-
able in case the dependency between patients is not very large. In this
approximation, we will approximate the days that a patients is actually
colonized while belonging to category Q. The expected number of days
that a patient is positive depends on the value of the parameters in the
mechanistic model and the mean prevalence will be a function of these
parameters.

The days for which it is demonstrated that a patient is uncolonized
(patient belongs to U/) do not contribute to the numerator (the number
of patient days for which patients are colonized), the days that a patient
has demonstrated colonization fully contribute to the numerator. The
contribution to the numerator for the days that the colonization status
of a patient is uncertain is more subtle. If a patient leaves the unit while
the colonization status is still uncertain after discharge, the contribution
to the numerator for a day of stay in Q is the sum of the elements of p
for which the patient is positive in the corresponding state.

If a patient became colonized during stay, we have to calculate, for
all days that the patients belonged to category Q, the probability that
the patient was colonized at a day given that the patient had become
colonized on the day of culturing. To do so, we determine the likeli-
hood that the culture result was indeed positive at the day of detection
of colonization, i.e., we determine o = %ﬁ% (see equation (5.6). The
contribution to the numerator per day that the patient stayed in Q is
the sum of the elements of £ for which the patient is positive in the cor-
responding state (i.e., the probability that the patient is colonized that
day given that the patient became colonized on the day of culturing.)
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5.5 Application to data

The method described in the previous sections was applied to two data
sets. For the first data set, section 5.5.1, we use a model with only two
colonization routes and without additional patient characteristics. For
the second data set, section 5.5.2, we use a slightly more complicated
model for the colonization dynamics of Staphylococcus aureus in a burn
wound center. We hypothesized three colonization routes exist and
we also included additional patient characteristics. For both data sets,
independently, genotyping was performed, which serves to provide a
gold standard.

In both cases, the aim was to determine the relative importance of
different infection routes and not necessarily to obtain the best possible
description of the data by a non-parametric approach. However, we
use a x>-test to avoid the possibility that we fit to the data a model
which does not reflect any of the properties of the data.

5.5.1 Gram-negative bacteria resistant to third generation
Cephalosporins

One data set was collected in two ICU’s of the UMC Utrecht, The
Netherlands, during an eight-month period. Rectal cultures were an-
alyzed and the presence of Gram-negative bacteria resistant to third
generation Cephalosporins was determined. Cultures were performed
on admission and afterwards twice weekly [Nijssen et al., 2005]. The
aim of this study was to determine the relative importance of two dif-
ferent colonization routes, i.e., cross-transmission and the endogenous
route (outgrowth of already pre-existing colonization in undetectable
quantities due to selective advantage when competitors suffer from
antibiotic treatment). In the gold standard (genotyping), epidemiolog-
ical linkage was defined as two patients having an overlap in stay in
the unit. Because of the possibility of low-level colonization directly
after acquisition, a maximum time window of 7 days was accepted
between periods that did not overlap. Cross-transmission was defined
as acquired colonization with a species identical to one in a patient
that was earlier found to colonized and which was epidemiologically
linked. Identity of species was determined on the base of high genetic
relatedness of different isolates.

In the method described in section 5.3, the per diem probabil-
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ity per susceptible patient to acquire colonization was set to be 1 —
e~ (@FBI/N) where « represents the endogenous term and GI/N the
cross-transmission term, with I the number of colonized patients in
the ICU (¢ < I < g+ ¢) and N the total number of patients in the
ICU. Both a and 3 should be positive. The 95% confidence set for the
parameters is shown in Figure 5.2 combined with the MLE-estimator
for the parameters and the line a = p(«, [3), for which both routes are
equally important, where p(«, () is the estimated prevalence for given
a and . The 95% confidence intervals for each of the parameters are
shown in Table 5.1.

The probability that cross-transmission is more important than the
endogenous route was calculated using the profile likelihood method.
Although the line of equal importance intersects the 95%-confidence
sets with the smallest area in Figure 5.2, we can predict with more than
95% accuracy that the endogenous route is more important than the
exogenous route for both ICU’s, see Table 5.1. To determine the ex-
pected relative importance of cross-transmission we evaluated the in-

tegral (5.23) with g(a, 8) = %} (see Table 5.1). These values
differ considerably from the MLE, which predicts that the influence of
cross-transmission is 0. Note that the MLE lies on the boundary of the
domain. This is because 3 was required to be non-negative. Otherwise

the MLE for 3 would be negative (|3| < 0.01 for both ICU’s).

The model predicts cross-transmission to be responsible for 18.3%
and 16.4% of the acquisitions in IC1 and IC2 respectively. This coin-
cides reasonably well with the results of the gold standard based on
the genotyping. Six out of 21 (28.6%) and four out of 19 (21.1%) acqui-
sitions were likely to have resulted from cross transmission in IC1 and
IC2 respectively (see Table 5.1 and Figure 5.2). See also the discussion
for an explanation of the difference. A goodness of fit x2-test (with two
free parameters) based on the MLE did not give an indication to reject
the model for any of the ICU’s. (The x2-statistics has a value larger than
the obtained value in 32% and 18% of the realization for IC1 and IC2
respectively.)

5.5.2 Staphylococcus aureus infections in burn wound pa-
tients

The second data set was collected in the burn wound center of the Mar-
tini hospital Groningen, the Netherlands, during a three-year period.



140 Dependency between patients
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Figure 5.2: 95% confidence area for the parameters. The per diem probability
per susceptible patient to acquire colonization was set to be 1 — e~ (@+51/N)
where « represents the endogenous term and $I/N the cross-transmission
term, with I the number of colonized patients in the ICU and N the total
number of patients in the ICU. The lines indicate equal importance of the en-
dogenous route and cross transmission.

| [ IC1 \ 1C2 |
a 0.017[0.008,0.035] [ 0.021[0.011,0.040]
i 0.0[0,0.039] 0.0[0,0.068]
prev. 24.42%[24.33,24.57] | 14.89%[14.69,15.04]
P(exo>endo) 2.3% 1.5%
% exo 18.3%[0,49] 16.4%[0,43.0]

Table 5.1: Estimates and 95%-confidence intervals for Gram-negative bacteria
resistant to third generation Cephalosporins. Rows 1,2 and 4 are calculated
using the profile likelihood method. Rows 3 and 5 are calculated using the
heuristic method of section 5.4.
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y IC1 IC2 Total
Admitted patients 277 180 457
Rectal swabs 753 490 1243
Patients colonized (%) 41 (14.7) 29 (16.1) | 70(15.3)
Patients colonized on admission (%) 19 (6.9) 7 (3.9) 26 (5.7)
Patients with acquired colon. (%) 21 (7.6) 19 (10.6) 40 (8.7)
Observed endemic prev.,, mean (%) || 17.5£13.5 | 142+ 12.6 | 16+ 94
range (%) 0-67 0-60 0-67
Median time to acq. in days (range) 7 (2-48) 10 (4-52) 8 (2-52)

Table 5.2: Basic data for Gram-negative bacteria resistant to third generation
Cephalosporins.

Burn wound patients lack the normal skin barrier which make them
vulnerable for colonization with Staphylococcus aureus which is associ-
ated with delayed wound healing [Kooistra-Smid et al., 2004]. Nasal
and pharyngeal colonization with Staphylococcus aureus is present in
30% of all patients on admission. The aim of the study was to inves-
tigate the colonization dynamics of Staphylococcus aureus in this 10 bed
unit.

During the three-year period cultures were performed on admis-
sion of the nose, throat and burn wounds and afterwards weekly of the
burn wounds. The study period was divided in two periods, a base-
line period from January 1999 till June 2000 and an intervention period
from July 2000 till December 2001. In the intervention period, on ad-
mission all patients were nasally treated with mupirocin to eradicate
and prevent nose colonization with Staphylococcus aureus.

To evaluate the effect of the intervention, we distinguish three types
of patients in the mechanistic model:

e non-colonized patients

e patients who are colonized in the nose/throat but not in their
wounds

e patients with wound colonization

(Although it seems logical to distinguish patients with wound coloniza-
tion between those with and without colonized nares, we choose not to
do so as nose cultures were not obtained after admission in many pa-
tients and nose cultures were frequently positive for the nose as well as
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nares

wound

1 — e (a+8x) 1— e (BN +7)

Figure 5.3: Acquisition routes for Staphylococcus aureus. The upper triangle
denotes the nose and throat. The lower triangle denotes the burn wounds. A
+/— sign denotes whether that site is colonized or not. We hypothesized (see
text) that once a patient is colonized in the burn wounds, the colonization sta-
tus of that patient is no longer important. We define three routes of bacterial
spread: First, due to a constant background force of infection (rate «), patients
can acquire wound colonization. Second, due to cross transmission (rate is
proportional to the number of patients with wound colonization (I) divided
by the total number of patients (N) and the constant of proportionality is )
patients can acquire wound colonization. Third: Patients carrying Staphylococ-
cus aureus in the nose/throat can colonize their own wound at rate . Id est,
patient colonized in the nose/throat can acquire wound colonization in three
ways, patients without colonization in the nares/throat can acquire wound
colonization in two ways.

for the wounds when cultures were obtained.

We hypothesized that three routes of acquisition existed (see Figure
5.3):

1. a constant background force of infection «, for instance due to
health care workers who are persistent carriers in the nose or due
to visitors.

2. cross transmission from wounds of patients with wound col-
onization to wounds of patients who are not colonized in the
wounds. The rate is proportional to the fraction of patients in the
unit with wound colonization and equals 34 with I the number
of patients with wound colonization and N the total number of
patients.

3. a constant colonization pressure v on the wounds when the
nose/throat of the patient are colonized.
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o B ¥
baseline 0.054(0,0.084) 0.012(0,0.15) 0.035(0,0.13)
mup 0.032(0.013-0.046) | 0(0,0.041) | 0.093(0.026,0.197)
whole period | 0.042(0.017-0.054) | 0.001(0-0.05) | 0.067(0.020-0.129)

Table 5.3: Maximum likelihood estimates for the baseline period, the
mupirocin period and the whole period for the full model. (95%-confidence
intervals are based on the profile-likelihood method.)

L baseline \ mup \ total |

o || 0.061[0.042,0.083] | 0.032[0.021,0.043] | 0.049[0.033,0.054]
v 0.035[0,0.121] 0.093[0.026,0.197] | 0.067[0.022,0.128]

Table 5.4: Estimates and 95%-confidence intervals for the model for coloniza-
tion with Staphylococcus aureus without cross-transmission (8 = 0).

We perform the likelihood analysis of Sections 5.2, 5.3 and 5.4. How-
ever, the evolution matrix A (5.4) not only depends on the colonization
status of the wounds of patients, but also on the colonization status of
the nose of patients in ¢/ and Q.

To determine the importance of the parameters, we calculated
MLE’s for the full model (see Table 5.3). The calculated prevalence
using the MLE-estimates was 62%, 58% and 60% for the baseline pe-
riod, the intervention period and the whole period respectively. We
also determined MLE’s for the models in which one of the parameters
was set to zero. For = 0, there was hardly any difference in MLE com-
pared to the MLE of the full model (loglikelihood decreases with 0.012
and 0.001 for the baseline and the whole period respectively). Therefore
we assume 3 = 0 in the rest of our analysis. (This can be formalized
by the likelihood ratio test for nested models (see e.g. [Wasserman,
2004]) and it was supported by the genotyping which also indicated
that patient-to-patient transmission hardly plays a role.) The results
of the model without cross transmission are shown in Figure 5.4 and
Table 5.4.

As can be seen from Figure 5.4 and Table 5.4, the confidence in-
tervals for v are wide which indicates a large uncertainty in the im-
portance of acquiring colonization from the patients own nose. To test
whether there is evidence that the parameters o and  changed due to
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the intervention, we use the likelihood ratio test for nested models. In
one model, a and v are assumed to be constant over the whole period
(both baseline and intervention period). In the other model, the param-
eters o and y were allowed to be different in the two periods. With this
likelihood ratio test, a and y were constant over the whole period with
a p-value< 0.05. That there is evidence for a change in the parameters
between the two periods could also be deduced from Table 5.4 as the
95%-confidence intervals for o do not overlap for the baseline period
and the intervention period. The intervention seems to protect patients
who are uncolonized in the nose/throat on admission. (For patients
who are colonized in the nose/throat on admission, it is less clear, as
the MLE of v increases in the intervention period although they were
nasally treated with mupirocin.) This could be explained if the nose
would serve as an intermediate step in the transmission process, in the
sense that acquired colonization in the nose precedes colonization of
wounds.

We also tested whether the vulnerability for wound colonization
was linearly correlated to the percentage of burned body surface. Id
est, whether the model in which the per diem probability for an un-
colonized patient with a fraction burned body surface of p would be
1 —e~(@Fm)r with n € {0, 1} representing the status of the nose, would
give a higher value of the likelihood in the MLE. (This assumption
again increases the complexity of the evolution matrix A.) For all peri-
ods, this assumption decreased the MLE. (Including cross-transmission
in the model in which vulnerability for wound colonization is linearly
correlated to the percentage of burned body surface did not change this
observation.) Therefore, there is no linear correlation between acquisi-
tion rate and the percentage burned body surface.

A goodness of fit y*-test (with two estimated parameters, o and 7)
based on MLE'’s did not give an indication to reject the model for any of
the two periods. (The x?-statistics has a value larger than the obtained
value in 12.3%, 28.3% and 36.4% of the realizations for the baseline, the
intervention period and the total period respectively.)

5.6 Optimal culturing frequency

In this section, we focus on the optimal culture frequency for distinction
between the endogenous route (fixed probability per patient per day to
acquire colonization) and the exogenous route (probability per patient
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Figure 5.4: 95% confidence area for the parameters «, the per diem likeli-
hood of acquisition of colonization due to the background force of infection,
and v the additional per diem likelihood of acquisitions of colonization in the
wounds for a patient colonized in the throat/nares. (a) baseline period, (b)
the mupirocin period (nasal treatment with mupirocin on admission to eradi-
cate and prevent nasal colonization), (¢): total period. The lines indicate equal
importance of the constant background force of infection and the infection
pressure from the throat/nares to the own wounds for patients colonized in
the throat/nares.
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per day to acquire colonization depends linearly on the fraction colo-
nized patients in the unit). When data about length of stay, moments
of cultures and results of the cultures are known, the model provides
estimates on the relative importance of both colonization routes.

However, which culture frequency should be chosen? The optimal
culture frequency will depend on the balance between the expected
time to establish the dominant infection route and the cost and effort
involved in the culture frequency. The answer depends mainly on two
variables. First, the relative importance of both routes and second the
endemic prevalence in the unit.

With an endemic prevalence of almost 100%, nearly all patients ac-
quire colonization shortly after admission and distinction between the
routes becomes impossible without genotyping. On the other hand, if
acquisition of colonization is very rare, there is hardly any information
about acquisition in the data and again very long study periods are re-
quired to establish the dominant route.

As an experiment, we performed 1000 simulations for different cul-
ture frequencies. For a period of 10 years, we simulated an ICU with
10 beds which are always occupied and with two routes transmission;
the endogenous route and the exogenous route. A database of patients
with an exponential distributed length of stay (mean 9 days) was con-
structed. The probability to be discharged was not influenced by col-
onization. A fraction 0.05 of the patients was colonized on admission.
Colonization dynamics were run with parameters o and (3 for the en-
dogenous and exogenous route respectively, In this way we obtained
a database with patients for which we knew the exact day of coloniza-
tion. For each simulation the maximum likelihood algorithm as de-
scribed in Sections 5.2, 5.3 and 5.4 was performed. In each simulation
and for each culture frequency, we determined each month whether we
could correctly predict with at least 0.95% confidence which of the two
routes is most important (using the profile likelihood method) leading
to a fraction of the simulations in which the dominant acquisition route
is predicted correctly.

Culture frequency is associated with the time until the dominant
transmission route is established (see Figure 5.5(a)). The culture regime
in which patients are only cultured on the days of admission and dis-
charge performs slightly worse than culturing on admission and after-
wards every 4 days. To determine the maximal information gained per
culture performed, we rescale the horizontal axis of Figure 5.5(a). The



5.7 Discussion 147

horizontal axis now represents the number of cultures performed (with
as unit the number of cultures performed per month if all patients are
cultured on a daily basis independent of their colonization status.) (see
Figure 5.5(b)). In this rescaling, we assume no additional cultures are
performed after a positive culture.

Performing daily cultures now performs very poor and culturing
only on admission and discharge gives the most information. However,
the difference in information gained per performed culture are small
for all culture regimes except culturing on a daily or two-daily basis.

5.7 Discussion

According to the gold standard provided by genotyping and epidemi-
ological linkage, the Markov chain model accurately quantified acqui-
sition routes of colonization with cephalosporin-resistant Enterobacte-
riaceae in two intensive care units and correctly established predom-
inance of endogenous over exogenous acquisition and correctly pre-
dicted that cross transmission of Staphylococcus aureus in a burn wound
centre was not important. This method, therefore, seems a promising
tool to provide essential information on the dynamics of microorgan-
isms in hospital settings on the basis of fluctuations in the prevalence,
without the necessity of labour-intensive and costly genotyping pro-
cedures. Antibiotic resistance is emerging in hospital settings world-
wide and with diminishing antibiotics remaining available for treat-
ment, prevention of spread will become more important. Up till now,
genotyping of multiple isolates in combination with interpretation of
epidemiological data have been the method of choice to reliably de-
termine dynamics of antibiotic resistance, especially in endemic set-
tings. However, extensive genotyping is costly and time-consuming
and, therefore, hardly feasible on a daily basis. The Markov model, as
proposed in this study, fulfills the need for an easy and reliable tool to
evaluate the dynamics of antibiotic resistance and is able to disentan-
gle the relevance of patient-dependent and non-dependent acquisition
routes on the basis of longitudinal colonization data only. As the re-
sults of cultures usually determine whether a patient is classified as
colonized or uncolonized, it seems logical to take these results as the
basis of the analysis and take into account the uncertainty in the mo-
ment of acquisition due to the fact that patients are not cultured contin-
uously. Also, the real days of admission and days of discharge of the
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Figure 5.5: Fraction of the 1000 simulation of an ICU with 10 beds in which
the dominant infection route could be correctly predicted with 95% confidence
for difference culture regime. (a) The horizontal axis denotes time in months
(b) The horizontal axis denotes the number of performed cultures with as unit
the number of cultures performed per month if patients are cultured on a daily
basis. Regimes labeled with number j denote culturing on admission and af-
terwards every j*" day. The culture regime labeled with a ‘d’ denotes culturing
on admission and on discharge. 5% of the patients is colonized on admission.
The true parameters are o« = 0.00515152 and # = 0.10303 leading to a mean
prevalence of 20% in the unit in which 80% of the acquisitions is due to cross
transmission.
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Figure 5.6: Time in months before in 80% of the 1000 simulations the domi-
nant route could be predicted with a p-value of 0.95 as a function of the fre-
quency. Cultures are performed on admission and afterwards every j* day.
An ICU with 10 beds, 5% of the patients is colonized on admission. (a) For
each simulation the mean prevalence is 30% and the relative importance of
cross transmission is 0, 20, 80 and 100%. (b) For each simulation the relative
importance of cross transmission is 80%, the mean prevalence is 10, 20, 30 and

40%.
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patients are used, avoiding extra assumptions like exponentially dis-
tributed lengths of stay. This framework allows for all kinds of Marko-
vian transmission models and also all kind of individual patient char-
acteristics can be used. Therefore patients need not be assumed to be
identical apart from their colonization status (see the analysis of the
data of the burn wound center in which we incorporated the status
of the nose and the percentage of burned body surface). Moreover,
spatial effects, such as whether patients share rooms or distance be-
tween beds, can be incorporated. Our model may offer three impor-
tant advantages for clinical practice. First, it allows quantifying of the
relative importance of exogenous and endogenous acquisition routes,
which is relevant for designing infection control strategies. Exogenous
transmission, usually occurring via temporarily contaminated hands
of staff, depends on health-care worker-related variables, such as con-
tact rates, level of cohorting and compliance with hand hygiene, as
well as on patient (body site and bacterial load) and microbial char-
acteristics (such as survival time of microorganisms on hands) [Bonten
et al., 2001]. Modulation of these variables is warranted when exoge-
nous transmission is an important acquisition route. Endogenous selec-
tion is driven by selective antibiotic pressure and does not depend on
colonization pressure in the unit. Transformation from susceptible to
resistant microorganisms can occur through mutations, upregulation
of resistance genes or horizontal gene transfer. In fact, the term ‘ac-
quired’ may not always be correct, as selection of pre-existing, but un-
detectable, flora on admission may only become apparent after some
time in ICU. Reducing selective antibiotic pressure is warranted when
endogenous selection is an important acquisition route. Second, the
Markov methodology may improve the reliability of the interpretation
of interventions, taking patient dependency into account. Many in-
fection control interventions (such as improving hand hygiene, use of
gloves and gowns and antibiotic cycling) have been analyzed in quasi-
experimental designs, such as before-after studies [Puzniak et al., 2002;
Harris et al., 2004]. Results were evaluated by standard statistical tests,
such as x?-test, T-test and regression analysis that neglect dependence
among patients. Therefore, if cross-transmission is relevant, differences
between baseline and intervention period, considered to be statistically
significant according to these statistical tests, do not necessarily prove
causality between intervention and outcome. Third, this method al-
lows quantification of infection control practices. A central concept
in infectious disease dynamics is the basic reproduction number R,
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which corresponds to the average number of secondary infected cases
in a wholly susceptible population [Anderson and May, 1991; Diek-
mann and Heesterbeek, 2000]. Within hospital settings, R, represents
the number of secondary cases through cross-transmission generated
by a primary case in a pathogen-free ward. (Note that the concept of Ry
is not entirely correct when it is possible to attain the disease without
transmission (endogenous route). However, the value of R, predicts
whether cross transmission on itself can maintain endemicity.) Infec-
tion prevention aims to reduce Ry to an effective R (Ry) value below
unity. In our study the Ry values for cephalosporin-resistant Enter-
obacteriaceae were close to zero in both wards. These findings suggest
that an intervention aimed at reducing cross-transmission can hardly
reduce resistance prevalence any further. In other settings or for other
pathogens, where Ry is > 1, calculation of Ry after an intervention
allows quantification of its effects.

Our model has some limitations. First, we also need that patients
are cultured on admission, as otherwise we have to make additional
assumptions about the probability that an admitted patient was colo-
nized on admission. Second, the role of environmental contamination
is not explicitly incorporated. When environmental contamination can
persist even when the patient who was the source of the contamina-
tion is no longer in the unit, the Markov property is not satisfied and
the model is not applicable. In theory, colonization status of a patient
might determine the likelihood of contamination of the inanimate en-
vironment and with discharge of the colonized patient, environmental
contamination might disappear as well. In that case, the inanimate en-
vironment could be considered as a functional part of the patient and
the Markov model still would apply. Third, the role of persistently
colonized health care workers has not been incorporated. Such health
care workers might act as a continuous source for transmission, though
contacts with different patients is unlikely to be randomly distributed.
However, despite the fact that multiple examples of outbreaks caused
by health care workers exist, persistently colonized health care work-
ers are, in general, not considered relevant sources for most nosoco-
mial pathogens. Moreover, permanently colonized health care workers
would impose a colonization pressure that would not depend on the
prevalence of colonized patients and would, therefore, be part of the so-
called endogenous process. Fourth, the number of acquisitions per unit
of time is associated with the time needed for obtaining reliable results.
When the prevalence is very low, there is not much information about
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acquisitions in the data. On the other hand, the mean endemic preva-
lence in the unit should not be very high as the relative fluctuations
in the daily endemic prevalence will then be small, making distinction
between a constant force of infection and a force of infection that is
proportional to the daily prevalence difficult. Another point is that the
numerical algorithm becomes slow when the number of patients for
whom the colonization status is unknown becomes large. However, the
actual unit size can be very large, as long as the number of patients in Q
does not become much larger than 10. If it does, the method can still be
performed but techniques to approximate the likelihood (e.g., EM al-
gorithm, [Wasserman, 2004]) have to be used. A hidden Markov chain
approach [Cooper et al., 2004] for these glued Markov chains would
be possible, but as the colonization status of most patients would be
unknown, the size of a unit has to be relatively small. If we incorpo-
rate that cultures are not 100% reliable (false positive and false nega-
tive cultures), we are uncertain of the colonization status of all patients
(although the likelihood of colonization depends on the outcome of the
culture tests). Therefore all patients are in Q and again, the size of the
unit should be relatively small. Another problem, not specific for this
approach, is that with a very realistic model with many parameters, of-
ten little can be said about the values of the parameters while a more
simplistic model ignores elements that are relevant in real life. How-
ever, the advantage of a mechanistic model is that the parameters have
a clear medical/biological meaning compared to non-parametric ap-
proaches. Note also that this framework is unnecessary when the pa-
tients are independent of each other (no transmission). Nevertheless,
this framework could serve as a test to determine whether dependency
between patients is relevant. The confidence intervals are based on the
assumption that the model, as used, is correct. Although the models
are not rejected by a x?-test and, therefore, seem to behave reasonably
well, the models do not capture the whole reality. Therefore, the true
confidence intervals might be wider than the reported ones. However,
this problem is inevitable as distinguishing between different infection
routes is the aim of this study and a model is needed to describe the
different routes.

In the data set of the burn wound center, cross transmission from
wound to wound appeared to be unimportant. Interventions, based on
improving the already high level of hand hygiene during wound care,
are, therefore, unlikely to be effective. Colonization of the nose how-
ever, seemed to be involved in acquiring wound colonization, although
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the exact route could not be determined from this dataset. Reduction of
the constant background force, possibly by reducing nose colonization
among HCW and preventing nose colonization of patients might be ef-
fective measures to reduce wound colonization. More detailed studies
in this direction are currently performed.

Finally, simulations show that culturing on a daily basis is the
fastest way to obtain results, however, the information gained per per-
formed culture is minimal. The practice of culturing on admission
and afterwards twice a week seems to provide a reasonable balance
between rapid results and avoiding too many cultures.

We thank Richard Gill for useful advice.
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Samenvatting

Dit proefschrift gaat over de dynamiek van antibioticaresisten-
tie. Ziekenhuizen, en binnen ziekenhuizen intensive care afdelin-
gen, fungeren als epicentra van resistentieproblemen. Hiervoor zijn
twee redenen. In ziekenhuizen, en in het bijzonder op intensive care
afdelingen, liggen patiénten met verhoogde vatbaarheid voor infecties.
Het gebruik van antibiotica op intensive care afdelingen is dan ook
substantieel hoger dan in de rest van het ziekenhuis en in de open
populatie. Dit antibioticagebruik leidt ertoe dat bacteriestammen die
resistent zijn voor de gebruikte antibiotica een selectievoordeel krij-
gen ten opzichte van niet-resistente stammen. In hoofdstuk 2 wordt
het belang van ziekenhuizen als epicentra onderzocht en wordt er
specifiek ingegaan op de interactie tussen dragerschap van resistente
bacterién in de open populatie en verspreiding van deze stammen
in het ziekenhuis. In hoofdstuk 3 worden twee modellen behandeld
voor de gevreesde ziekenhuisbacterie Methicilline-resistente Staphylo-
coccus aureus (MRSA). In het eerste model wordt naar de effectiviteit
van verschillende infectiepreventiestrategién gekeken uitgaande van
de huidige Nederlandse situatie. In het tweede model worden ver-
schillende scenario’s gesimuleerd, zowel voor de Nederlandse als de
Amerikaanse situatie. Ook wordt het effect van transmissie in de open
populatie onderzocht.

De laatste twee hoofdstukken zijn data-georiénteerd. In hoofdstuk
4 bekijken we twee methodes om onderscheid te maken tussen de
twee fenomenen dat de kans op infectie toeneemt naarmate een patiént
langer op een intensive care afdeling ligt en dat de toestand van een
patiént verslechtert als gevolg van de infectie waardoor de patient
langer op de intensive care afdeling ligt.

In het laatste hoofdstuk wordt een kader geintroduceerd waarmee
op basis van longitudinale data (opnamegegevens en kweekgegevens)
het belang van verschillende infectieroutes bepaald kan worden. Bin-
nen deze Markov-keten benadering wordt getracht zo dicht mogelijk
bij de beschikbare data te blijven door bij de wiskundige beschrij-
ving van de ‘toestand’ in, bijvoorbeeld, een intensive care afdeling, de
werkelijk aanwezige gegevens als uitgangspunt te nemen.
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